Mercurial > hg > octave-nkf
view liboctave/DASRT-opts.in @ 7155:6ca57492b26e
[project @ 2007-11-10 05:14:23 by jwe]
author | jwe |
---|---|
date | Sat, 10 Nov 2007 05:14:23 +0000 |
parents | 503001863427 |
children | 8970b4b10e9f |
line wrap: on
line source
# Copyright (C) 2002, 2005, 2007 John W. Eaton # # This file is part of Octave. # # Octave is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at # your option) any later version. # # Octave is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with Octave; see the file COPYING. If not, see # <http://www.gnu.org/licenses/>. CLASS = "DASRT" INCLUDE = "DAERT.h" OPTION NAME = "absolute tolerance" DOC_ITEM Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length. END_DOC_ITEM TYPE = "Array<double>" SET_ARG_TYPE = "const $TYPE&" INIT_BODY $OPTVAR.resize (1); $OPTVAR(0) = ::sqrt (DBL_EPSILON); END_INIT_BODY SET_CODE void set_$OPT (double val) { $OPTVAR.resize (1); $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON); reset = true; } void set_$OPT (const $TYPE& val) { $OPTVAR = val; reset = true; } END_SET_CODE END_OPTION OPTION NAME = "relative tolerance" DOC_ITEM Relative tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length. The local error test applied at each integration step is @example abs (local error in x(i)) <= ... rtol(i) * abs (Y(i)) + atol(i) @end example END_DOC_ITEM TYPE = "Array<double>" SET_ARG_TYPE = "const $TYPE&" INIT_BODY $OPTVAR.resize (1); $OPTVAR(0) = ::sqrt (DBL_EPSILON); END_INIT_BODY SET_CODE void set_$OPT (double val) { $OPTVAR.resize (1); $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON); reset = true; } void set_$OPT (const $TYPE& val) { $OPTVAR = val; reset = true; } END_SET_CODE END_OPTION OPTION NAME = "initial step size" DOC_ITEM Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step. If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize. END_DOC_ITEM TYPE = "double" INIT_VALUE = "-1.0" SET_EXPR = "(val >= 0.0) ? val : -1.0" END_OPTION OPTION NAME = "maximum order" DOC_ITEM Restrict the maximum order of the solution method. This option must be between 1 and 5, inclusive. END_DOC_ITEM TYPE = "octave_idx_type" INIT_VALUE = "-1" SET_EXPR = "val" END_OPTION OPTION NAME = "maximum step size" DOC_ITEM Setting the maximum stepsize will avoid passing over very large regions. END_DOC_ITEM TYPE = "double" INIT_VALUE = "-1.0" SET_EXPR = "(val >= 0.0) ? val : -1.0" END_OPTION OPTION NAME = "step limit" DOC_ITEM Maximum number of integration steps to attempt on a single call to the underlying Fortran code. END_DOC_ITEM TYPE = "octave_idx_type" INIT_VALUE = "-1" SET_EXPR = "(val >= 0) ? val : -1" END_OPTION