Mercurial > hg > octave-nkf
view liboctave/fCDiagMatrix.cc @ 10789:6f640ed5bb93
__gnuplot_print__.m: Fix broken options.
author | Ben Abbott <bpabbott@mac.com> |
---|---|
date | Wed, 14 Jul 2010 19:29:02 -0400 |
parents | a0728e81ed25 |
children | fd0a3ac60b0e |
line wrap: on
line source
// DiagMatrix manipulations. /* Copyright (C) 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 John W. Eaton Copyright (C) 2009 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "Array-util.h" #include "lo-error.h" #include "lo-ieee.h" #include "mx-base.h" #include "mx-inlines.cc" #include "oct-cmplx.h" // FloatComplex Diagonal Matrix class FloatComplexDiagMatrix::FloatComplexDiagMatrix (const FloatDiagMatrix& a) : MDiagArray2<FloatComplex> (a.rows (), a.cols ()) { for (octave_idx_type i = 0; i < length (); i++) elem (i, i) = a.elem (i, i); } bool FloatComplexDiagMatrix::operator == (const FloatComplexDiagMatrix& a) const { if (rows () != a.rows () || cols () != a.cols ()) return 0; return mx_inline_equal (length (), data (), a.data ()); } bool FloatComplexDiagMatrix::operator != (const FloatComplexDiagMatrix& a) const { return !(*this == a); } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (float val) { for (octave_idx_type i = 0; i < length (); i++) elem (i, i) = val; return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatComplex& val) { for (octave_idx_type i = 0; i < length (); i++) elem (i, i) = val; return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (float val, octave_idx_type beg, octave_idx_type end) { if (beg < 0 || end >= length () || end < beg) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = beg; i <= end; i++) elem (i, i) = val; return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatComplex& val, octave_idx_type beg, octave_idx_type end) { if (beg < 0 || end >= length () || end < beg) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = beg; i <= end; i++) elem (i, i) = val; return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatColumnVector& a) { octave_idx_type len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatComplexColumnVector& a) { octave_idx_type len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatRowVector& a) { octave_idx_type len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatComplexRowVector& a) { octave_idx_type len = length (); if (a.length () != len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = 0; i < len; i++) elem (i, i) = a.elem (i); return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatColumnVector& a, octave_idx_type beg) { octave_idx_type a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatComplexColumnVector& a, octave_idx_type beg) { octave_idx_type a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatRowVector& a, octave_idx_type beg) { octave_idx_type a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } FloatComplexDiagMatrix& FloatComplexDiagMatrix::fill (const FloatComplexRowVector& a, octave_idx_type beg) { octave_idx_type a_len = a.length (); if (beg < 0 || beg + a_len >= length ()) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } for (octave_idx_type i = 0; i < a_len; i++) elem (i+beg, i+beg) = a.elem (i); return *this; } FloatDiagMatrix FloatComplexDiagMatrix::abs (void) const { return FloatDiagMatrix (diag ().abs (), rows (), columns ()); } FloatComplexDiagMatrix conj (const FloatComplexDiagMatrix& a) { return FloatComplexDiagMatrix (conj (a.diag ()), a.rows (), a.columns ()); } // resize is the destructive analog for this one FloatComplexMatrix FloatComplexDiagMatrix::extract (octave_idx_type r1, octave_idx_type c1, octave_idx_type r2, octave_idx_type c2) const { if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; } octave_idx_type new_r = r2 - r1 + 1; octave_idx_type new_c = c2 - c1 + 1; FloatComplexMatrix result (new_r, new_c); for (octave_idx_type j = 0; j < new_c; j++) for (octave_idx_type i = 0; i < new_r; i++) result.elem (i, j) = elem (r1+i, c1+j); return result; } // extract row or column i. FloatComplexRowVector FloatComplexDiagMatrix::row (octave_idx_type i) const { octave_idx_type r = rows (); octave_idx_type c = cols (); if (i < 0 || i >= r) { (*current_liboctave_error_handler) ("invalid row selection"); return FloatComplexRowVector (); } FloatComplexRowVector retval (c, 0.0); if (r <= c || (r > c && i < c)) retval.elem (i) = elem (i, i); return retval; } FloatComplexRowVector FloatComplexDiagMatrix::row (char *s) const { if (! s) { (*current_liboctave_error_handler) ("invalid row selection"); return FloatComplexRowVector (); } char c = *s; if (c == 'f' || c == 'F') return row (static_cast<octave_idx_type>(0)); else if (c == 'l' || c == 'L') return row (rows () - 1); else { (*current_liboctave_error_handler) ("invalid row selection"); return FloatComplexRowVector (); } } FloatComplexColumnVector FloatComplexDiagMatrix::column (octave_idx_type i) const { octave_idx_type r = rows (); octave_idx_type c = cols (); if (i < 0 || i >= c) { (*current_liboctave_error_handler) ("invalid column selection"); return FloatComplexColumnVector (); } FloatComplexColumnVector retval (r, 0.0); if (r >= c || (r < c && i < r)) retval.elem (i) = elem (i, i); return retval; } FloatComplexColumnVector FloatComplexDiagMatrix::column (char *s) const { if (! s) { (*current_liboctave_error_handler) ("invalid column selection"); return FloatComplexColumnVector (); } char c = *s; if (c == 'f' || c == 'F') return column (static_cast<octave_idx_type>(0)); else if (c == 'l' || c == 'L') return column (cols () - 1); else { (*current_liboctave_error_handler) ("invalid column selection"); return FloatComplexColumnVector (); } } FloatComplexDiagMatrix FloatComplexDiagMatrix::inverse (void) const { octave_idx_type info; return inverse (info); } FloatComplexDiagMatrix FloatComplexDiagMatrix::inverse (octave_idx_type& info) const { octave_idx_type r = rows (); octave_idx_type c = cols (); if (r != c) { (*current_liboctave_error_handler) ("inverse requires square matrix"); return FloatComplexDiagMatrix (); } FloatComplexDiagMatrix retval (r, c); info = 0; for (octave_idx_type i = 0; i < length (); i++) { if (elem (i, i) == static_cast<float> (0.0)) { info = -1; return *this; } else retval.elem (i, i) = static_cast<float> (1.0) / elem (i, i); } return retval; } FloatComplexDiagMatrix FloatComplexDiagMatrix::pseudo_inverse (void) const { octave_idx_type r = rows (); octave_idx_type c = cols (); octave_idx_type len = length (); FloatComplexDiagMatrix retval (c, r); for (octave_idx_type i = 0; i < len; i++) { if (elem (i, i) != 0.0f) retval.elem (i, i) = 1.0f / elem (i, i); else retval.elem (i, i) = 0.0f; } return retval; } bool FloatComplexDiagMatrix::all_elements_are_real (void) const { return mx_inline_all_real (length (), data ()); } // diagonal matrix by diagonal matrix -> diagonal matrix operations FloatComplexDiagMatrix& FloatComplexDiagMatrix::operator += (const FloatDiagMatrix& a) { octave_idx_type r = rows (); octave_idx_type c = cols (); octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (r != a_nr || c != a_nc) { gripe_nonconformant ("operator +=", r, c, a_nr, a_nc); return *this; } if (r == 0 || c == 0) return *this; FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_add2 (length (), d, a.data ()); return *this; } FloatComplexDiagMatrix operator * (const FloatComplexDiagMatrix& a, const FloatDiagMatrix& b) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (a_nc != b_nr) gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc); FloatComplexDiagMatrix c (a_nr, b_nc); octave_idx_type len = c.length (), lenm = len < a_nc ? len : a_nc; for (octave_idx_type i = 0; i < lenm; i++) c.dgxelem (i) = a.dgelem (i) * b.dgelem (i); for (octave_idx_type i = lenm; i < len; i++) c.dgxelem (i) = 0.0f; return c; } FloatComplexDiagMatrix operator * (const FloatDiagMatrix& a, const FloatComplexDiagMatrix& b) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (a_nc != b_nr) { gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc); return FloatComplexDiagMatrix (); } if (a_nr == 0 || a_nc == 0 || b_nc == 0) return FloatComplexDiagMatrix (a_nr, a_nc, 0.0); FloatComplexDiagMatrix c (a_nr, b_nc); octave_idx_type len = a_nr < b_nc ? a_nr : b_nc; for (octave_idx_type i = 0; i < len; i++) { float a_element = a.elem (i, i); FloatComplex b_element = b.elem (i, i); c.elem (i, i) = a_element * b_element; } return c; } FloatComplexDiagMatrix operator * (const FloatComplexDiagMatrix& a, const FloatComplexDiagMatrix& b) { octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); octave_idx_type b_nr = b.rows (); octave_idx_type b_nc = b.cols (); if (a_nc != b_nr) { gripe_nonconformant ("operator *", a_nr, a_nc, b_nr, b_nc); return FloatComplexDiagMatrix (); } if (a_nr == 0 || a_nc == 0 || b_nc == 0) return FloatComplexDiagMatrix (a_nr, a_nc, 0.0); FloatComplexDiagMatrix c (a_nr, b_nc); octave_idx_type len = a_nr < b_nc ? a_nr : b_nc; for (octave_idx_type i = 0; i < len; i++) { FloatComplex a_element = a.elem (i, i); FloatComplex b_element = b.elem (i, i); c.elem (i, i) = a_element * b_element; } return c; } // other operations FloatComplexDET FloatComplexDiagMatrix::determinant (void) const { FloatComplexDET det (1.0f); if (rows () != cols ()) { (*current_liboctave_error_handler) ("determinant requires square matrix"); det = FloatComplexDET (0.0); } else { octave_idx_type len = length (); for (octave_idx_type i = 0; i < len; i++) det *= elem (i, i); } return det; } float FloatComplexDiagMatrix::rcond (void) const { FloatColumnVector av = diag (0).map<float> (std::abs); float amx = av.max (), amn = av.min (); return amx == 0 ? 0.0f : amn / amx; } // i/o std::ostream& operator << (std::ostream& os, const FloatComplexDiagMatrix& a) { FloatComplex ZERO (0.0); // int field_width = os.precision () + 7; for (octave_idx_type i = 0; i < a.rows (); i++) { for (octave_idx_type j = 0; j < a.cols (); j++) { if (i == j) os << " " /* setw (field_width) */ << a.elem (i, i); else os << " " /* setw (field_width) */ << ZERO; } os << "\n"; } return os; }