Mercurial > hg > octave-nkf
view liboctave/cruft/odepack/sprepj.f @ 16609:6f7940e36322
improve handling of cursor blinking for unix GUI terminal window
* QUnixTerminalImpl.h, QUnixTerminalImpl.cpp
(QUnixTerminalImpl::focusInEvent): Delete.
* TerminalView.h, TerminalView.cpp (TerminalView::drawCursor):
Don't check focus.
(TerminalView::setBlinkingCursorState): New function.
(TerminalView::setBlinkingCursor): Use it.
(TerminalView::focusInEvent, TerminalView::focusOutEvent):
New functions.
(TerminalView::blinkCursorEvent): Only toggle state if
_hasBlinkingCursor is true.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 04 May 2013 01:01:44 -0400 |
parents | 648dabbb4c6b |
children |
line wrap: on
line source
SUBROUTINE SPREPJ (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM, 1 F, JAC) C***BEGIN PROLOGUE SPREPJ C***SUBSIDIARY C***PURPOSE Compute and process Newton iteration matrix. C***TYPE SINGLE PRECISION (SPREPJ-S, DPREPJ-D) C***AUTHOR Hindmarsh, Alan C., (LLNL) C***DESCRIPTION C C SPREPJ is called by SSTODE to compute and process the matrix C P = I - h*el(1)*J , where J is an approximation to the Jacobian. C Here J is computed by the user-supplied routine JAC if C MITER = 1 or 4, or by finite differencing if MITER = 2, 3, or 5. C If MITER = 3, a diagonal approximation to J is used. C J is stored in WM and replaced by P. If MITER .ne. 3, P is then C subjected to LU decomposition in preparation for later solution C of linear systems with P as coefficient matrix. This is done C by SGETRF if MITER = 1 or 2, and by SGBTRF if MITER = 4 or 5. C C In addition to variables described in SSTODE and SLSODE prologues, C communication with SPREPJ uses the following: C Y = array containing predicted values on entry. C FTEM = work array of length N (ACOR in SSTODE). C SAVF = array containing f evaluated at predicted y. C WM = real work space for matrices. On output it contains the C inverse diagonal matrix if MITER = 3 and the LU decomposition C of P if MITER is 1, 2 , 4, or 5. C Storage of matrix elements starts at WM(3). C WM also contains the following matrix-related data: C WM(1) = SQRT(UROUND), used in numerical Jacobian increments. C WM(2) = H*EL0, saved for later use if MITER = 3. C IWM = integer work space containing pivot information, starting at C IWM(21), if MITER is 1, 2, 4, or 5. IWM also contains band C parameters ML = IWM(1) and MU = IWM(2) if MITER is 4 or 5. C EL0 = EL(1) (input). C IERPJ = output error flag, = 0 if no trouble, .gt. 0 if C P matrix found to be singular. C JCUR = output flag = 1 to indicate that the Jacobian matrix C (or approximation) is now current. C This routine also uses the COMMON variables EL0, H, TN, UROUND, C MITER, N, NFE, and NJE. C C***SEE ALSO SLSODE C***ROUTINES CALLED SGBTRF, SGETRF, SVNORM C***COMMON BLOCKS SLS001 C***REVISION HISTORY (YYMMDD) C 791129 DATE WRITTEN C 890501 Modified prologue to SLATEC/LDOC format. (FNF) C 890504 Minor cosmetic changes. (FNF) C 930809 Renamed to allow single/double precision versions. (ACH) C 010412 Reduced size of Common block /SLS001/. (ACH) C 031105 Restored 'own' variables to Common block /SLS001/, to C enable interrupt/restart feature. (ACH) C***END PROLOGUE SPREPJ C**End EXTERNAL F, JAC INTEGER NEQ, NYH, IWM REAL Y, YH, EWT, FTEM, SAVF, WM DIMENSION NEQ(*), Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*), 1 WM(*), IWM(*) INTEGER IOWND, IOWNS, 1 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, 2 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, 3 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU REAL ROWNS, 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND COMMON /SLS001/ ROWNS(209), 1 CCMAX, EL0, H, HMIN, HMXI, HU, RC, TN, UROUND, 2 IOWND(6), IOWNS(6), 3 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, 4 LYH, LEWT, LACOR, LSAVF, LWM, LIWM, METH, MITER, 5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU INTEGER I, I1, I2, IER, II, J, J1, JJ, LENP, 1 MBA, MBAND, MEB1, MEBAND, ML, ML3, MU, NP1 REAL CON, DI, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ, 1 SVNORM C C***FIRST EXECUTABLE STATEMENT SPREPJ NJE = NJE + 1 IERPJ = 0 JCUR = 1 HL0 = H*EL0 GO TO (100, 200, 300, 400, 500), MITER C If MITER = 1, call JAC and multiply by scalar. ----------------------- 100 LENP = N*N DO 110 I = 1,LENP 110 WM(I+2) = 0.0E0 CALL JAC (NEQ, TN, Y, 0, 0, WM(3), N) CON = -HL0 DO 120 I = 1,LENP 120 WM(I+2) = WM(I+2)*CON GO TO 240 C If MITER = 2, make N calls to F to approximate J. -------------------- 200 FAC = SVNORM (N, SAVF, EWT) R0 = 1000.0E0*ABS(H)*UROUND*N*FAC IF (R0 .EQ. 0.0E0) R0 = 1.0E0 SRUR = WM(1) J1 = 2 DO 230 J = 1,N YJ = Y(J) R = MAX(SRUR*ABS(YJ),R0/EWT(J)) Y(J) = Y(J) + R FAC = -HL0/R CALL F (NEQ, TN, Y, FTEM) DO 220 I = 1,N 220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC Y(J) = YJ J1 = J1 + N 230 CONTINUE NFE = NFE + N C Add identity matrix. ------------------------------------------------- 240 J = 3 NP1 = N + 1 DO 250 I = 1,N WM(J) = WM(J) + 1.0E0 250 J = J + NP1 C Do LU decomposition on P. -------------------------------------------- CALL SGETRF (N, N, WM(3), N, IWM(21), IER) IF (IER .NE. 0) IERPJ = 1 RETURN C If MITER = 3, construct a diagonal approximation to J and P. --------- 300 WM(2) = HL0 R = EL0*0.1E0 DO 310 I = 1,N 310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2)) CALL F (NEQ, TN, Y, WM(3)) NFE = NFE + 1 DO 320 I = 1,N R0 = H*SAVF(I) - YH(I,2) DI = 0.1E0*R0 - H*(WM(I+2) - SAVF(I)) WM(I+2) = 1.0E0 IF (ABS(R0) .LT. UROUND/EWT(I)) GO TO 320 IF (ABS(DI) .EQ. 0.0E0) GO TO 330 WM(I+2) = 0.1E0*R0/DI 320 CONTINUE RETURN 330 IERPJ = 1 RETURN C If MITER = 4, call JAC and multiply by scalar. ----------------------- 400 ML = IWM(1) MU = IWM(2) ML3 = ML + 3 MBAND = ML + MU + 1 MEBAND = MBAND + ML LENP = MEBAND*N DO 410 I = 1,LENP 410 WM(I+2) = 0.0E0 CALL JAC (NEQ, TN, Y, ML, MU, WM(ML3), MEBAND) CON = -HL0 DO 420 I = 1,LENP 420 WM(I+2) = WM(I+2)*CON GO TO 570 C If MITER = 5, make MBAND calls to F to approximate J. ---------------- 500 ML = IWM(1) MU = IWM(2) MBAND = ML + MU + 1 MBA = MIN(MBAND,N) MEBAND = MBAND + ML MEB1 = MEBAND - 1 SRUR = WM(1) FAC = SVNORM (N, SAVF, EWT) R0 = 1000.0E0*ABS(H)*UROUND*N*FAC IF (R0 .EQ. 0.0E0) R0 = 1.0E0 DO 560 J = 1,MBA DO 530 I = J,N,MBAND YI = Y(I) R = MAX(SRUR*ABS(YI),R0/EWT(I)) 530 Y(I) = Y(I) + R CALL F (NEQ, TN, Y, FTEM) DO 550 JJ = J,N,MBAND Y(JJ) = YH(JJ,1) YJJ = Y(JJ) R = MAX(SRUR*ABS(YJJ),R0/EWT(JJ)) FAC = -HL0/R I1 = MAX(JJ-MU,1) I2 = MIN(JJ+ML,N) II = JJ*MEB1 - ML + 2 DO 540 I = I1,I2 540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC 550 CONTINUE 560 CONTINUE NFE = NFE + MBA C Add identity matrix. ------------------------------------------------- 570 II = MBAND + 2 DO 580 I = 1,N WM(II) = WM(II) + 1.0E0 580 II = II + MEBAND C Do LU decomposition of P. -------------------------------------------- CALL SGBTRF ( N, N, ML, MU, WM(3), MEBAND, IWM(21), IER) IF (IER .NE. 0) IERPJ = 1 RETURN C----------------------- END OF SUBROUTINE SPREPJ ---------------------- END