Mercurial > hg > octave-nkf
view scripts/sparse/gmres.m @ 20788:7374a3a6d594
use new string_value method to handle value extraction errors
* urlwrite.cc: Use new string_value method.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 08 Oct 2015 17:26:40 -0400 |
parents | df437a52bcaf |
children |
line wrap: on
line source
## Copyright (C) 2009-2015 Carlo de Falco ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 3 of the License, or (at your ## option) any later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} gmres (@var{A}, @var{b}, @var{m}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}) ## @deftypefnx {Function File} {@var{x} =} gmres (@var{A}, @var{b}, @var{m}, @var{rtol}, @var{maxit}, @var{P}) ## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} gmres (@dots{}) ## Solve @code{A x = b} using the Preconditioned GMRES iterative method with ## restart, a.k.a. PGMRES(m). ## ## @itemize @minus ## @item @var{rtol} is the relative tolerance, ## if not given or set to [] the default value 1e-6 is used. ## ## @item @var{maxit} is the maximum number of outer iterations, if not given or ## set to [] the default value @code{min (10, numel (b) / restart)} is used. ## ## @item @var{x0} is the initial guess, ## if not given or set to [] the default value @code{zeros (size (b))} is used. ## ## @item @var{m} is the restart parameter, ## if not given or set to [] the default value @code{numel (b)} is used. ## @end itemize ## ## Argument @var{A} can be passed as a matrix, function handle, or inline ## function @code{f} such that @code{f(x) = A*x}. ## ## The preconditioner @var{P} is given as @code{P = M1 * M2}. Both @var{M1} ## and @var{M2} can be passed as a matrix, function handle, or inline function ## @code{g} such that @code{g(x) = M1\x} or @code{g(x) = M2\x}. ## ## Besides the vector @var{x}, additional outputs are: ## ## @itemize @minus ## @item @var{flag} indicates the exit status: ## ## @table @asis ## @item 0 : iteration converged to within the specified tolerance ## ## @item 1 : maximum number of iterations exceeded ## ## @item 2 : unused, but skipped for compatibility ## ## @item 3 : algorithm reached stagnation (no change between iterations) ## @end table ## ## @item @var{relres} is the final value of the relative residual. ## ## @item @var{iter} is a vector containing the number of outer iterations and ## total iterations performed. ## ## @item @var{resvec} is a vector containing the relative residual at each ## iteration. ## @end itemize ## ## @seealso{bicg, bicgstab, cgs, pcg, pcr, qmr} ## @end deftypefn function [x, flag, relres, it, resvec] = gmres (A, b, restart, rtol, maxit, M1, M2, x0) if (nargin < 2 || nargin > 8) print_usage (); endif if (ischar (A)) Ax = str2func (A); elseif (isnumeric (A) && ismatrix (A)) Ax = @(x) A*x; elseif (isa (A, "function_handle")) Ax = A; else error ("gmres: A must be a function or matrix"); endif if (nargin < 3 || isempty (restart)) restart = rows (b); endif if (nargin < 4 || isempty (rtol)) rtol = 1e-6; endif if (nargin < 5 || isempty (maxit)) maxit = min (rows (b)/restart, 10); endif if (nargin < 6 || isempty (M1)) M1m1x = @(x) x; elseif (ischar (M1)) M1m1x = str2func (M1); elseif (isnumeric (M1) && ismatrix (M1)) M1m1x = @(x) M1 \ x; elseif (isa (M1, "function_handle")) M1m1x = M1; else error ("gmres: preconditioner M1 must be a function or matrix"); endif if (nargin < 7 || isempty (M2)) M2m1x = @(x) x; elseif (ischar (M2)) M2m1x = str2func (M2); elseif (isnumeric (M2) && ismatrix (M2)) M2m1x = @(x) M2 \ x; elseif (isa (M2, "function_handle")) M2m1x = M2; else error ("gmres: preconditioner M2 must be a function or matrix"); endif Pm1x = @(x) M2m1x (M1m1x (x)); if (nargin < 8 || isempty (x0)) x0 = zeros (size (b)); endif x_old = x0; x = x_old; prec_res = Pm1x (b - Ax (x_old)); presn = norm (prec_res, 2); B = zeros (restart + 1, 1); V = zeros (rows (x), restart); H = zeros (restart + 1, restart); ## begin loop iter = 1; restart_it = restart + 1; resvec = zeros (maxit, 1); resvec(1) = presn; prec_b_norm = norm (Pm1x (b), 2); flag = 1; # Default flag is maximum # of iterations exceeded while (iter <= maxit * restart && presn > rtol * prec_b_norm) ## restart if (restart_it > restart) restart_it = 1; x_old = x; prec_res = Pm1x (b - Ax (x_old)); presn = norm (prec_res, 2); B(1) = presn; H(:) = 0; V(:, 1) = prec_res / presn; endif ## basic iteration tmp = Pm1x (Ax (V(:, restart_it))); [V(:,restart_it+1), H(1:restart_it+1, restart_it)] = ... mgorth (tmp, V(:,1:restart_it)); Y = (H(1:restart_it+1, 1:restart_it) \ B(1:restart_it+1)); little_res = B(1:restart_it+1) - ... H(1:restart_it+1, 1:restart_it) * Y(1:restart_it); presn = norm (little_res, 2); x = x_old + V(:, 1:restart_it) * Y(1:restart_it); resvec(iter+1) = presn; if (norm (x - x_old, inf) <= eps) flag = 3; # Stagnation: no change between iterations break; endif restart_it++ ; iter++; endwhile if (nargout > 1) ## Calculate extra outputs as requested relres = presn / prec_b_norm; if (relres <= rtol) flag = 0; # Converged to solution within tolerance endif it = [floor(iter/restart), restart_it-1]; endif endfunction %!demo %! dim = 20; %! A = spdiags ([-ones(dim,1) 2*ones(dim,1) ones(dim,1)], [-1:1], dim, dim); %! b = ones (dim, 1); %! [x, flag, relres, iter, resvec] = gmres (A, b, 10, 1e-10, dim, @(x) x ./ diag (A), [], b) %!shared A, b, dim %! dim = 100; %!test %! A = spdiags ([-ones(dim,1) 2*ones(dim,1) ones(dim,1)], [-1:1], dim, dim); %! b = ones (dim, 1); %! x = gmres (A, b, 10, 1e-10, dim, @(x) x ./ diag (A), [], b); %! assert (x, A\b, 1e-9*norm (x, Inf)); %! %!test %! x = gmres (A, b, dim, 1e-10, 1e4, @(x) diag (diag (A)) \ x, [], b); %! assert(x, A\b, 1e-7*norm (x, Inf)); %! %!test %! A = spdiags ([[1./(2:2:2*(dim-1)) 0]; 1./(1:2:2*dim-1); [0 1./(2:2:2*(dim-1))]]', -1:1, dim, dim); %! A = A'*A; %! b = rand (dim, 1); %! [x, resvec] = gmres (@(x) A*x, b, dim, 1e-10, dim, @(x) x./diag (A), [], []); %! assert (x, A\b, 1e-9*norm (x, Inf)); %! x = gmres (@(x) A*x, b, dim, 1e-10, 1e6, @(x) diag (diag (A)) \ x, [], []); %! assert (x, A\b, 1e-9*norm (x, Inf)); %!test %! x = gmres (@(x) A*x, b, dim, 1e-10, 1e6, @(x) x ./ diag (A), [], []); %! assert (x, A\b, 1e-7*norm (x, Inf)); %!error gmres (1) %!error gmres (1,2,3,4,5,6,7,8,9) %!error <A must be> gmres ({1},2) %!error <A must be a function or matrix> gmres ({1},2) %!error <M1 must be a function or matrix> gmres (1,2,3,4,5,{6}) %!error <M2 must be a function or matrix> gmres (1,2,3,4,5,6,{7})