Mercurial > hg > octave-nkf
view src/graphics.cc @ 9636:74be4b7273e4 ss-3-3-50
update version info for snapshot
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 12 Sep 2009 06:55:13 -0400 |
parents | dfc68e6d8741 |
children | 73153525df9a |
line wrap: on
line source
/* Copyright (C) 2007, 2008, 2009 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cctype> #include <cfloat> #include <cstdlib> #include <algorithm> #include <list> #include <map> #include <set> #include <string> #include <sstream> #include "file-ops.h" #include "file-stat.h" #include "cmd-edit.h" #include "defun.h" #include "display.h" #include "error.h" #include "graphics.h" #include "input.h" #include "ov.h" #include "oct-obj.h" #include "oct-map.h" #include "ov-fcn-handle.h" #include "parse.h" #include "toplev.h" #include "unwind-prot.h" // forward declaration static octave_value xget (const graphics_handle& h, const caseless_str& name); static void gripe_set_invalid (const std::string& pname) { error ("set: invalid value for %s property", pname.c_str ()); } // Check to see that PNAME matches just one of PNAMES uniquely. // Return the full name of the match, or an empty caseless_str object // if there is no match, or the match is ambiguous. static caseless_str validate_property_name (const std::string& who, const std::string& what, const std::set<std::string>& pnames, const caseless_str& pname) { size_t len = pname.length (); std::set<std::string> matches; for (std::set<std::string>::const_iterator p = pnames.begin (); p != pnames.end (); p++) { if (pname.compare (*p, len)) { if (len == p->length ()) { // Exact match. return pname; } matches.insert (*p); } } size_t num_matches = matches.size (); if (num_matches == 0) { error ("%s: unknown %s property %s", who.c_str (), what.c_str (), pname.c_str ()); } else if (num_matches > 1) { string_vector sv (matches); std::ostringstream os; sv.list_in_columns (os); std::string match_list = os.str (); error ("%s: ambiguous %s property name %s; possible matches:\n\n%s", who.c_str (), what.c_str (), pname.c_str (), match_list.c_str ()); } else if (num_matches == 1) { // Exact match was handled above. std::string possible_match = *(matches.begin ()); warning_with_id ("Octave:abbreviated-property-match", "%s: allowing %s to match %s property %s", who.c_str (), pname.c_str (), what.c_str (), possible_match.c_str ()); return possible_match; } return caseless_str (); } static Matrix jet_colormap (void) { Matrix cmap (64, 3, 0.0); for (octave_idx_type i = 0; i < 64; i++) { // This is the jet colormap. It would be nice to be able // to feval the jet function but since there is a static // property object that includes a colormap_property // object, we need to initialize this before main is even // called, so calling an interpreted function is not // possible. double x = i / 63.0; if (x >= 3.0/8.0 && x < 5.0/8.0) cmap(i,0) = 4.0 * x - 3.0/2.0; else if (x >= 5.0/8.0 && x < 7.0/8.0) cmap(i,0) = 1.0; else if (x >= 7.0/8.0) cmap(i,0) = -4.0 * x + 9.0/2.0; if (x >= 1.0/8.0 && x < 3.0/8.0) cmap(i,1) = 4.0 * x - 1.0/2.0; else if (x >= 3.0/8.0 && x < 5.0/8.0) cmap(i,1) = 1.0; else if (x >= 5.0/8.0 && x < 7.0/8.0) cmap(i,1) = -4.0 * x + 7.0/2.0; if (x < 1.0/8.0) cmap(i,2) = 4.0 * x + 1.0/2.0; else if (x >= 1.0/8.0 && x < 3.0/8.0) cmap(i,2) = 1.0; else if (x >= 3.0/8.0 && x < 5.0/8.0) cmap(i,2) = -4.0 * x + 5.0/2.0; } return cmap; } static double default_screendepth (void) { return display_info::depth (); } static Matrix default_screensize (void) { Matrix retval (1, 4, 1.0); retval(2) = display_info::width (); retval(3) = display_info::height (); return retval; } static double default_screenpixelsperinch (void) { return (display_info::x_dpi () + display_info::y_dpi ()) / 2; } static Matrix default_colororder (void) { Matrix retval (7, 3, 0.0); retval(0,2) = 1.0; retval(1,1) = 0.5; retval(2,0) = 1.0; retval(3,1) = 0.75; retval(3,2) = 0.75; retval(4,0) = 0.75; retval(4,2) = 0.75; retval(5,0) = 0.75; retval(5,1) = 0.75; retval(6,0) = 0.25; retval(6,1) = 0.25; retval(6,2) = 0.25; return retval; } static Matrix default_lim (void) { Matrix m (1, 2, 0); m(1) = 1; return m; } static Matrix default_data (void) { Matrix retval (1, 2); retval(0) = 0; retval(1) = 1; return retval; } static Matrix default_axes_position (void) { Matrix m (1, 4, 0.0); m(0) = 0.13; m(1) = 0.11; m(2) = 0.775; m(3) = 0.815; return m; } static Matrix default_axes_outerposition (void) { Matrix m (1, 4, 0.0); m(2) = m(3) = 1.0; return m; } static Matrix default_axes_tick (void) { Matrix m (1, 6, 0.0); m(0) = 0.0; m(1) = 0.2; m(2) = 0.4; m(3) = 0.6; m(4) = 0.8; m(5) = 1.0; return m; } static Matrix default_axes_ticklength (void) { Matrix m (1, 2, 0.01); m(1) = 0.025; return m; } static Matrix default_figure_position (void) { Matrix m (1, 4, 0.0); m(0) = 300; m(1) = 200; m(2) = 560; m(3) = 420; return m; } static Matrix default_figure_papersize (void) { Matrix m (1, 2, 0.0); m(0) = 8.5; m(1) = 11.0; return m; } static Matrix default_figure_paperposition (void) { Matrix m (1, 4, 0.0); m(0) = 0.25; m(1) = 2.50; m(2) = 8.00; m(3) = 6.00; return m; } static Matrix convert_position (const Matrix& pos, const caseless_str& from_units, const caseless_str& to_units, const Matrix& parent_dim = Matrix (1, 2, 0.0)) { Matrix retval (1, 4); double res = 0; if (from_units.compare ("pixels")) retval = pos; else if (from_units.compare ("normalized")) { retval(0) = pos(0) * parent_dim(0) + 1; retval(1) = pos(1) * parent_dim(1) + 1; retval(2) = pos(2) * parent_dim(0); retval(3) = pos(3) * parent_dim(1); } else if (from_units.compare ("characters")) { if (res <= 0) res = xget (0, "screenpixelsperinch").double_value (); double f = 0.0; // FIXME -- this assumes the system font is Helvetica 10pt // (for which "x" requires 6x12 pixels at 74.951 pixels/inch) f = 12.0 * res / 74.951; if (f > 0) { retval(0) = 0.5 * pos(0) * f; retval(1) = pos(1) * f; retval(2) = 0.5 * pos(2) * f; retval(3) = pos(3) * f; } } else { if (res <= 0) res = xget (0, "screenpixelsperinch").double_value (); double f = 0.0; if (from_units.compare ("points")) f = res / 72.0; else if (from_units.compare ("inches")) f = res; else if (from_units.compare ("centimeters")) f = res / 2.54; if (f > 0) { retval(0) = pos(0) * f + 1; retval(1) = pos(1) * f + 1; retval(2) = pos(2) * f; retval(3) = pos(3) * f; } } if (! to_units.compare ("pixels")) { if (to_units.compare ("normalized")) { retval(0) = (retval(0) - 1) / parent_dim(0); retval(1) = (retval(1) - 1) / parent_dim(1); retval(2) /= parent_dim(0); retval(3) /= parent_dim(1); } else if (to_units.compare ("characters")) { if (res <= 0) res = xget (0, "screenpixelsperinch").double_value (); double f = 0.0; f = 12.0 * res / 74.951; if (f > 0) { retval(0) = 2 * retval(0) / f; retval(1) = retval(1) / f; retval(2) = 2 * retval(2) / f; retval(3) = retval(3) / f; } } else { if (res <= 0) res = xget (0, "screenpixelsperinch").double_value (); double f = 0.0; if (to_units.compare ("points")) f = res / 72.0; else if (to_units.compare ("inches")) f = res; else if (to_units.compare ("centimeters")) f = res / 2.54; if (f > 0) { retval(0) = (retval(0) - 1) / f; retval(1) = (retval(1) - 1) / f; retval(2) /= f; retval(3) /= f; } } } return retval; } static graphics_object xget_ancestor (const graphics_object& go_arg, const std::string& type) { graphics_object go = go_arg; do { if (go.valid_object ()) { if (go.isa (type)) return go; else go = gh_manager::get_object (go.get_parent ()); } else return graphics_object (); } while (true); } static octave_value convert_cdata (const base_properties& props, const octave_value& cdata, bool is_scaled, int cdim) { dim_vector dv (cdata.dims ()); if (dv.length () == cdim && dv(cdim-1) == 3) return cdata; Matrix cmap (1, 3, 0.0); Matrix clim (1, 2, 0.0); graphics_object go = gh_manager::get_object (props.get___myhandle__ ()); graphics_object fig = xget_ancestor (go, "figure"); if (fig.valid_object ()) { Matrix _cmap = fig.get (caseless_str ("colormap")).matrix_value (); if (! error_state) cmap = _cmap; } if (is_scaled) { graphics_object ax = xget_ancestor (go, "axes"); if (ax.valid_object ()) { Matrix _clim = ax.get (caseless_str ("clim")).matrix_value (); if (! error_state) clim = _clim; } } dv.resize (cdim); dv(cdim-1) = 3; NDArray a (dv); octave_idx_type lda = a.numel () / static_cast<octave_idx_type> (3); octave_idx_type nc = cmap.rows (); double *av = a.fortran_vec (); const double *cmapv = cmap.data (); const double *cv = 0; const octave_uint8 *icv = 0; if (cdata.is_integer_type ()) icv = cdata.uint8_array_value ().data (); else cv = cdata.array_value ().data (); for (octave_idx_type i = 0; i < lda; i++) { double x = (cv ? cv[i] : double (icv[i])); if (is_scaled) x = xround ((nc - 1) * (x - clim(0)) / (clim(1) - clim(0))); else x = xround (x - 1); if (xisnan (x)) { av[i] = x; av[i+lda] = x; av[i+2*lda] = x; } else { if (x < 0) x = 0; else if (x >= nc) x = (nc - 1); octave_idx_type idx = static_cast<octave_idx_type> (x); av[i] = cmapv[idx]; av[i+lda] = cmapv[idx+nc]; av[i+2*lda] = cmapv[idx+2*nc]; } } return octave_value (a); } template<class T> static void get_array_limits (const Array<T>& m, double& emin, double& emax, double& eminp) { const T *data = m.data (); octave_idx_type n = m.numel (); for (octave_idx_type i = 0; i < n; i++) { double e = double (data[i]); if (! (xisinf (e) || xisnan (e))) { if (e < emin) emin = e; if (e > emax) emax = e; if (e > 0 && e < eminp) eminp = e; } } } static bool lookup_object_name (const caseless_str& name, caseless_str& go_name, caseless_str& rest) { int len = name.length (); int offset = 0; bool result = false; if (len >= 4) { caseless_str pfx = name.substr (0, 4); if (pfx.compare ("axes") || pfx.compare ("line") || pfx.compare ("text")) offset = 4; else if (len >= 5) { pfx = name.substr (0, 5); if (pfx.compare ("image") || pfx.compare ("patch")) offset = 5; else if (len >= 6) { pfx = name.substr (0, 6); if (pfx.compare ("figure")) offset = 6; else if (len >= 7) { pfx = name.substr (0, 7); if (pfx.compare ("surface") || pfx.compare ("hggroup")) offset = 7; } } } if (offset > 0) { go_name = pfx; rest = name.substr (offset); result = true; } } return result; } static base_graphics_object* make_graphics_object_from_type (const caseless_str& type, const graphics_handle& h = graphics_handle (), const graphics_handle& p = graphics_handle ()) { base_graphics_object *go = 0; if (type.compare ("figure")) go = new figure (h, p); else if (type.compare ("axes")) go = new axes (h, p); else if (type.compare ("line")) go = new line (h, p); else if (type.compare ("text")) go = new text (h, p); else if (type.compare ("image")) go = new image (h, p); else if (type.compare ("patch")) go = new patch (h, p); else if (type.compare ("surface")) go = new surface (h, p); else if (type.compare ("hggroup")) go = new hggroup (h, p); return go; } // --------------------------------------------------------------------- bool base_property::set (const octave_value& v, bool do_run ) { if (do_set (v)) { // notify backend if (id >= 0) { graphics_object go = gh_manager::get_object (parent); if (go) { graphics_backend backend = go.get_backend(); if (backend) backend.property_changed (go, id); } } // run listeners if (do_run && ! error_state) run_listeners (POSTSET); return true; } return false; } void base_property::run_listeners (listener_mode mode) { const octave_value_list& l = listeners[mode]; for (int i = 0; i < l.length (); i++) { gh_manager::execute_callback (parent, l(i), octave_value ()); if (error_state) break; } } radio_values::radio_values (const std::string& opt_string) { size_t beg = 0; size_t len = opt_string.length (); bool done = len == 0; while (! done) { size_t end = opt_string.find ('|', beg); if (end == std::string::npos) { end = len; done = true; } std::string t = opt_string.substr (beg, end-beg); // Might want more error checking here... if (t[0] == '{') { t = t.substr (1, t.length () - 2); default_val = t; } else if (beg == 0) // ensure default value default_val = t; possible_vals.insert (t); beg = end + 1; } } bool color_values::str2rgb (std::string str) { double tmp_rgb[3] = {0, 0, 0}; bool retval = true; unsigned int len = str.length(); std::transform (str.begin (), str.end (), str.begin (), tolower); if (str.compare(0, len, "blue", 0, len) == 0) tmp_rgb[2] = 1; else if (str.compare(0, len, "black", 0, len) == 0 || str.compare(0, len, "k", 0, len) == 0) tmp_rgb[0] = tmp_rgb[1] = tmp_rgb[2] = 0; else if (str.compare(0, len, "red", 0, len) == 0) tmp_rgb[0] = 1; else if (str.compare(0, len, "green", 0, len) == 0) tmp_rgb[1] = 1; else if (str.compare(0, len, "yellow", 0, len) == 0) tmp_rgb[0] = tmp_rgb[1] = 1; else if (str.compare(0, len, "magenta", 0, len) == 0) tmp_rgb[0] = tmp_rgb[2] = 1; else if (str.compare(0, len, "cyan", 0, len) == 0) tmp_rgb[1] = tmp_rgb[2] = 1; else if (str.compare(0, len, "white", 0, len) == 0 || str.compare(0, len, "w", 0, len) == 0) tmp_rgb[0] = tmp_rgb[1] = tmp_rgb[2] = 1; else retval = false; if (retval) { for (int i = 0; i < 3; i++) xrgb(i) = tmp_rgb[i]; } return retval; } bool color_property::do_set (const octave_value& val) { if (val.is_string ()) { std::string s = val.string_value (); if (! s.empty ()) { if (radio_val.contains (s)) { if (current_type != radio_t || current_val != s) { current_val = s; current_type = radio_t; return true; } } else { color_values col (s); if (! error_state) { if (current_type != color_t || col != color_val) { color_val = col; current_type = color_t; return true; } } else error ("invalid value for color property \"%s\" (value = %s)", get_name ().c_str (), s.c_str ()); } } else error ("invalid value for color property \"%s\"", get_name ().c_str ()); } else if (val.is_numeric_type ()) { Matrix m = val.matrix_value (); if (m.numel () == 3) { color_values col (m (0), m (1), m(2)); if (! error_state) { if (current_type != color_t || col != color_val) { color_val = col; current_type = color_t; return true; } } } else error ("invalid value for color property \"%s\"", get_name ().c_str ()); } else error ("invalid value for color property \"%s\"", get_name ().c_str ()); return false; } bool double_radio_property::do_set (const octave_value& val) { if (val.is_string ()) { std::string s = val.string_value (); if (! s.empty () && radio_val.contains (s)) { if (current_type != radio_t || s != current_val) { current_val = s; current_type = radio_t; return true; } } else error ("invalid value for double_radio property \"%s\"", get_name ().c_str ()); } else if (val.is_scalar_type () && val.is_real_type ()) { double new_dval = val.double_value (); if (current_type != double_t || new_dval != dval) { dval = new_dval; current_type = double_t; return true; } } else error ("invalid value for double_radio property \"%s\"", get_name ().c_str ()); return false; } bool array_property::validate (const octave_value& v) { bool xok = false; // FIXME -- should we always support []? if (v.is_empty () && v.is_numeric_type ()) return true; // check value type if (type_constraints.size () > 0) { for (std::list<std::string>::const_iterator it = type_constraints.begin (); ! xok && it != type_constraints.end (); ++it) if ((*it) == v.class_name ()) xok = true; } else xok = v.is_numeric_type (); if (xok) { dim_vector vdims = v.dims (); int vlen = vdims.length (); xok = false; // check value size if (size_constraints.size () > 0) for (std::list<dim_vector>::const_iterator it = size_constraints.begin (); ! xok && it != size_constraints.end (); ++it) { dim_vector itdims = (*it); if (itdims.length () == vlen) { xok = true; for (int i = 0; xok && i < vlen; i++) if (itdims(i) >= 0 && itdims(i) != vdims(i)) xok = false; } } else return true; } return xok; } bool array_property::is_equal (const octave_value& v) const { if (data.type_name () == v.type_name ()) { if (data.dims () == v.dims ()) { #define CHECK_ARRAY_EQUAL(T,F,A) \ { \ if (data.numel () == 1) \ return data.F ## scalar_value () == \ v.F ## scalar_value (); \ else \ { \ /* Keep copy of array_value to allow sparse/bool arrays */ \ /* that are converted, to not be deallocated early */ \ const A m1 = data.F ## array_value (); \ const T* d1 = m1.data (); \ const A m2 = v.F ## array_value (); \ const T* d2 = m2.data ();\ \ bool flag = true; \ \ for (int i = 0; flag && i < data.numel (); i++) \ if (d1[i] != d2[i]) \ flag = false; \ \ return flag; \ } \ } if (data.is_double_type() || data.is_bool_type ()) CHECK_ARRAY_EQUAL (double, , NDArray) else if (data.is_single_type ()) CHECK_ARRAY_EQUAL (float, float_, FloatNDArray) else if (data.is_int8_type ()) CHECK_ARRAY_EQUAL (octave_int8, int8_, int8NDArray) else if (data.is_int16_type ()) CHECK_ARRAY_EQUAL (octave_int16, int16_, int16NDArray) else if (data.is_int32_type ()) CHECK_ARRAY_EQUAL (octave_int32, int32_, int32NDArray) else if (data.is_int64_type ()) CHECK_ARRAY_EQUAL (octave_int64, int64_, int64NDArray) else if (data.is_uint8_type ()) CHECK_ARRAY_EQUAL (octave_uint8, uint8_, uint8NDArray) else if (data.is_uint16_type ()) CHECK_ARRAY_EQUAL (octave_uint16, uint16_, uint16NDArray) else if (data.is_uint32_type ()) CHECK_ARRAY_EQUAL (octave_uint32, uint32_, uint32NDArray) else if (data.is_uint64_type ()) CHECK_ARRAY_EQUAL (octave_uint64, uint64_, uint64NDArray) } } return false; } void array_property::get_data_limits (void) { xmin = xminp = octave_Inf; xmax = -octave_Inf; if (! data.is_empty ()) { if (data.is_integer_type ()) { if (data.is_int8_type ()) get_array_limits (data.int8_array_value (), xmin, xmax, xminp); else if (data.is_uint8_type ()) get_array_limits (data.uint8_array_value (), xmin, xmax, xminp); else if (data.is_int16_type ()) get_array_limits (data.int16_array_value (), xmin, xmax, xminp); else if (data.is_uint16_type ()) get_array_limits (data.uint16_array_value (), xmin, xmax, xminp); else if (data.is_int32_type ()) get_array_limits (data.int32_array_value (), xmin, xmax, xminp); else if (data.is_uint32_type ()) get_array_limits (data.uint32_array_value (), xmin, xmax, xminp); else if (data.is_int64_type ()) get_array_limits (data.int64_array_value (), xmin, xmax, xminp); else if (data.is_uint64_type ()) get_array_limits (data.uint64_array_value (), xmin, xmax, xminp); } else get_array_limits (data.array_value (), xmin, xmax, xminp); } } bool handle_property::do_set (const octave_value& v) { double dv = v.double_value (); if (! error_state) { graphics_handle gh = gh_manager::lookup (dv); if (xisnan (gh.value ()) || gh.ok ()) { if (current_val != gh) { current_val = gh; return true; } } else error ("set: invalid graphics handle (= %g) for property \"%s\"", dv, get_name ().c_str ()); } else error ("set: invalid graphics handle for property \"%s\"", get_name ().c_str ()); return false; } bool callback_property::validate (const octave_value& v) const { // case 1: function handle // case 2: cell array with first element being a function handle // case 3: string corresponding to known function name // case 4: evaluatable string // case 5: empty matrix if (v.is_function_handle ()) return true; else if (v.is_string ()) // complete validation will be done at execution-time return true; else if (v.is_cell () && v.length () > 0 && (v.rows() == 1 || v.columns () == 1) && v.cell_value ()(0).is_function_handle ()) return true; else if (v.is_empty ()) return true; return false; } void callback_property::execute (const octave_value& data) const { if (callback.is_defined () && ! callback.is_empty ()) gh_manager::execute_callback (get_parent (), callback, data); } // Used to cache dummy graphics objects from which dynamic // properties can be cloned. static std::map<caseless_str, graphics_object> dprop_obj_map; property property::create (const std::string& name, const graphics_handle& h, const caseless_str& type, const octave_value_list& args) { property retval; if (type.compare ("string")) { std::string val = (args.length () > 0 ? args(0).string_value () : ""); if (! error_state) retval = property (new string_property (name, h, val)); } else if (type.compare ("any")) { octave_value val = (args.length () > 0 ? args(0) : octave_value (Matrix ())); retval = property (new any_property (name, h, val)); } else if (type.compare ("radio")) { if (args.length () > 0) { std::string vals = args(0).string_value (); if (! error_state) { retval = property (new radio_property (name, h, vals)); if (args.length () > 1) retval.set (args(1)); } else error ("addproperty: invalid argument for radio property, expected a string value"); } else error ("addproperty: missing possible values for radio property"); } else if (type.compare ("double")) { double d = (args.length () > 0 ? args(0).double_value () : 0); if (! error_state) retval = property (new double_property (name, h, d)); } else if (type.compare ("handle")) { double hh = (args.length () > 0 ? args(0).double_value () : octave_NaN); if (! error_state) { graphics_handle gh (hh); retval = property (new handle_property (name, h, gh)); } } else if (type.compare ("boolean")) { retval = property (new bool_property (name, h, false)); if (args.length () > 0) retval.set (args(0)); } else if (type.compare ("data")) { retval = property (new array_property (name, h, Matrix ())); if (args.length () > 0) { retval.set (args(0)); // FIXME -- additional argument could define constraints, // but is this really useful? } } else if (type.compare ("color")) { color_values cv (0, 0, 0); radio_values rv; if (args.length () > 1) rv = radio_values (args(1).string_value ()); if (! error_state) { retval = property (new color_property (name, h, cv, rv)); if (! error_state) { if (args.length () > 0 && ! args(0).is_empty ()) retval.set (args(0)); else retval.set (rv.default_value ()); } } } else { caseless_str go_name, go_rest; if (lookup_object_name (type, go_name, go_rest)) { graphics_object go; std::map<caseless_str, graphics_object>::const_iterator it = dprop_obj_map.find (go_name); if (it == dprop_obj_map.end ()) { base_graphics_object *bgo = make_graphics_object_from_type (go_name); if (bgo) { go = graphics_object (bgo); dprop_obj_map[go_name] = go; } } else go = it->second; if (go.valid_object ()) { property prop = go.get_properties ().get_property (go_rest); if (! error_state) { retval = prop.clone (); retval.set_parent (h); retval.set_name (name); if (args.length () > 0) retval.set (args(0)); } } else error ("addproperty: invalid object type (= %s)", go_name.c_str ()); } else error ("addproperty: unsupported type for dynamic property (= %s)", type.c_str ()); } return retval; } // --------------------------------------------------------------------- void property_list::set (const caseless_str& name, const octave_value& val) { size_t offset = 0; size_t len = name.length (); if (len > 4) { caseless_str pfx = name.substr (0, 4); if (pfx.compare ("axes") || pfx.compare ("line") || pfx.compare ("text")) offset = 4; else if (len > 5) { pfx = name.substr (0, 5); if (pfx.compare ("image") || pfx.compare ("patch")) offset = 5; else if (len > 6) { pfx = name.substr (0, 6); if (pfx.compare ("figure")) offset = 6; else if (len > 7) { pfx = name.substr (0, 7); if (pfx.compare ("surface") || pfx.compare ("hggroup")) offset = 7; } } } if (offset > 0) { // FIXME -- should we validate property names and values here? std::string pname = name.substr (offset); std::transform (pfx.begin (), pfx.end (), pfx.begin (), tolower); std::transform (pname.begin (), pname.end (), pname.begin (), tolower); bool has_property = false; if (pfx == "axes") has_property = axes::properties::has_core_property (pname); else if (pfx == "line") has_property = line::properties::has_core_property (pname); else if (pfx == "text") has_property = text::properties::has_core_property (pname); else if (pfx == "image") has_property = image::properties::has_core_property (pname); else if (pfx == "patch") has_property = patch::properties::has_core_property (pname); else if (pfx == "figure") has_property = figure::properties::has_core_property (pname); else if (pfx == "surface") has_property = surface::properties::has_core_property (pname); else if (pfx == "hggroup") has_property = hggroup::properties::has_core_property (pname); if (has_property) { bool remove = false; if (val.is_string ()) { caseless_str tval = val.string_value (); remove = tval.compare ("remove"); } pval_map_type& pval_map = plist_map[pfx]; if (remove) { pval_map_iterator p = pval_map.find (pname); if (p != pval_map.end ()) pval_map.erase (p); } else pval_map[pname] = val; } else error ("invalid %s property `%s'", pfx.c_str (), pname.c_str ()); } } if (! error_state && offset == 0) error ("invalid default property specification"); } octave_value property_list::lookup (const caseless_str& name) const { octave_value retval; size_t offset = 0; size_t len = name.length (); if (len > 4) { caseless_str pfx = name.substr (0, 4); if (pfx.compare ("axes") || pfx.compare ("line") || pfx.compare ("text")) offset = 4; else if (len > 5) { pfx = name.substr (0, 5); if (pfx.compare ("image") || pfx.compare ("patch")) offset = 5; else if (len > 6) { pfx = name.substr (0, 6); if (pfx.compare ("figure")) offset = 6; else if (len > 7) { pfx = name.substr (0, 7); if (pfx.compare ("surface") || pfx.compare ("hggroup")) offset = 7; } } } if (offset > 0) { std::string pname = name.substr (offset); std::transform (pfx.begin (), pfx.end (), pfx.begin (), tolower); std::transform (pname.begin (), pname.end (), pname.begin (), tolower); plist_map_const_iterator p = find (pfx); if (p != end ()) { const pval_map_type& pval_map = p->second; pval_map_const_iterator q = pval_map.find (pname); if (q != pval_map.end ()) retval = q->second; } } } return retval; } Octave_map property_list::as_struct (const std::string& prefix_arg) const { Octave_map m; for (plist_map_const_iterator p = begin (); p != end (); p++) { std::string prefix = prefix_arg + p->first; const pval_map_type pval_map = p->second; for (pval_map_const_iterator q = pval_map.begin (); q != pval_map.end (); q++) m.assign (prefix + q->first, q->second); } return m; } graphics_handle::graphics_handle (const octave_value& a) : val (octave_NaN) { if (a.is_empty ()) /* do nothing */; else { double tval = a.double_value (); if (! error_state) val = tval; else error ("invalid graphics handle"); } } void graphics_object::set (const octave_value_list& args) { int nargin = args.length (); if (nargin == 0) rep->defaults (); else if (nargin % 2 == 0) { for (int i = 0; i < nargin; i += 2) { caseless_str name = args(i).string_value (); if (! error_state) { octave_value val = args(i+1); if (val.is_string ()) { caseless_str tval = val.string_value (); if (tval.compare ("default")) val = get_default (name); else if (tval.compare ("factory")) val = get_factory_default (name); } if (error_state) break; rep->set (name, val); } else error ("set: expecting argument %d to be a property name", i); } } else error ("set: invalid number of arguments"); } static double make_handle_fraction (void) { static double maxrand = RAND_MAX + 2.0; return (rand () + 1.0) / maxrand; } graphics_handle gh_manager::get_handle (const std::string& go_name) { graphics_handle retval; if (go_name == "figure") { // Figure handles are positive integers corresponding to the // figure number. // We always want the lowest unused figure number. retval = 1; while (handle_map.find (retval) != handle_map.end ()) retval++; } else { // Other graphics handles are negative integers plus some random // fractional part. To avoid running out of integers, we // recycle the integer part but tack on a new random part each // time. free_list_iterator p = handle_free_list.begin (); if (p != handle_free_list.end ()) { retval = *p; handle_free_list.erase (p); } else { retval = graphics_handle (next_handle); next_handle = ceil (next_handle) - 1.0 - make_handle_fraction (); } } return retval; } void gh_manager::do_free (const graphics_handle& h) { if (h.ok ()) { if (h.value () != 0) { iterator p = handle_map.find (h); if (p != handle_map.end ()) { base_properties& bp = p->second.get_properties (); bp.set_beingdeleted (true); bp.delete_children (); octave_value val = bp.get_deletefcn (); bp.execute_deletefcn (); // notify backend graphics_backend backend = p->second.get_backend (); if (backend) backend.object_destroyed (p->second); // Note: this will be valid only for first explicitly // deleted object. All its children will then have an // unknown backend. // Graphics handles for non-figure objects are negative // integers plus some random fractional part. To avoid // running out of integers, we recycle the integer part // but tack on a new random part each time. handle_map.erase (p); if (h.value () < 0) handle_free_list.insert (ceil (h.value ()) - make_handle_fraction ()); } else error ("graphics_handle::free: invalid object %g", h.value ()); } else error ("graphics_handle::free: can't delete root figure"); } } gh_manager *gh_manager::instance = 0; static void xset (const graphics_handle& h, const caseless_str& name, const octave_value& val) { graphics_object obj = gh_manager::get_object (h); obj.set (name, val); } static void xset (const graphics_handle& h, const octave_value_list& args) { if (args.length () > 0) { graphics_object obj = gh_manager::get_object (h); obj.set (args); } } static octave_value xget (const graphics_handle& h, const caseless_str& name) { graphics_object obj = gh_manager::get_object (h); return obj.get (name); } static graphics_handle reparent (const octave_value& ov, const std::string& who, const std::string& property, const graphics_handle& new_parent, bool adopt = true) { graphics_handle h = octave_NaN; double val = ov.double_value (); if (! error_state) { h = gh_manager::lookup (val); if (h.ok ()) { graphics_object obj = gh_manager::get_object (h); graphics_handle parent_h = obj.get_parent (); graphics_object parent_obj = gh_manager::get_object (parent_h); parent_obj.remove_child (h); if (adopt) obj.set ("parent", new_parent.value ()); else obj.reparent (new_parent); } else error ("%s: invalid graphics handle (= %g) for %s", who.c_str (), val, property.c_str ()); } else error ("%s: expecting %s to be a graphics handle", who.c_str (), property.c_str ()); return h; } // This function is NOT equivalent to the scripting language function gcf. graphics_handle gcf (void) { octave_value val = xget (0, "currentfigure"); return val.is_empty () ? octave_NaN : val.double_value (); } // This function is NOT equivalent to the scripting language function gca. graphics_handle gca (void) { octave_value val = xget (gcf (), "currentaxes"); return val.is_empty () ? octave_NaN : val.double_value (); } static void adopt (const graphics_handle& p, const graphics_handle& h) { graphics_object parent_obj = gh_manager::get_object (p); parent_obj.adopt (h); } static bool is_handle (const graphics_handle& h) { return h.ok (); } static bool is_handle (double val) { graphics_handle h = gh_manager::lookup (val); return h.ok (); } static octave_value is_handle (const octave_value& val) { octave_value retval = false; if (val.is_real_scalar () && is_handle (val.double_value ())) retval = true; else if (val.is_real_matrix ()) { if (val.is_string ()) retval = boolNDArray (val.dims (), false); else { const NDArray handles = val.array_value (); if (! error_state) { boolNDArray result (handles.dims ()); for (octave_idx_type i = 0; i < handles.numel (); i++) result.xelem (i) = is_handle (handles (i)); retval = result; } } } return retval; } static bool is_figure (double val) { graphics_object obj = gh_manager::get_object (val); return obj && obj.isa ("figure"); } static void xcreatefcn (const graphics_handle& h) { graphics_object obj = gh_manager::get_object (h); obj.get_properties ().execute_createfcn (); } // --------------------------------------------------------------------- void base_graphics_backend::property_changed (const graphics_handle& h, int id) { graphics_object go = gh_manager::get_object (h); property_changed (go, id); } void base_graphics_backend::object_created (const graphics_handle& h) { graphics_object go = gh_manager::get_object (h); object_created (go); } void base_graphics_backend::object_destroyed (const graphics_handle& h) { graphics_object go = gh_manager::get_object (h); object_destroyed (go); } // --------------------------------------------------------------------- static Matrix maybe_set_children (const Matrix& kids, const octave_value& val) { const Matrix new_kids = val.matrix_value (); bool ok = true; if (! error_state) { if (kids.numel () == new_kids.numel ()) { Matrix t1 = kids; Matrix t2 = new_kids; t1.sort (); t2.sort (); if (t1 != t2) ok = false; } else ok = false; if (! ok) error ("set: new children must be a permutation of existing children"); } else { ok = false; error ("set: expecting children to be array of graphics handles"); } return ok ? new_kids : kids; } void base_properties::set_from_list (base_graphics_object& obj, property_list& defaults) { std::string go_name = graphics_object_name (); property_list::plist_map_const_iterator p = defaults.find (go_name); if (p != defaults.end ()) { const property_list::pval_map_type pval_map = p->second; for (property_list::pval_map_const_iterator q = pval_map.begin (); q != pval_map.end (); q++) { std::string pname = q->first; obj.set (pname, q->second); if (error_state) { error ("error setting default property %s", pname.c_str ()); break; } } } } octave_value base_properties::get_dynamic (const caseless_str& name) const { octave_value retval; std::map<caseless_str, property, cmp_caseless_str>::const_iterator it = all_props.find (name); if (it != all_props.end ()) retval = it->second.get (); else error ("get: unknown property \"%s\"", name.c_str ()); return retval; } octave_value base_properties::get_dynamic (bool all) const { Octave_map m; for (std::map<caseless_str, property, cmp_caseless_str>::const_iterator it = all_props.begin (); it != all_props.end (); ++it) if (all || ! it->second.is_hidden ()) m.assign (it->second.get_name (), it->second.get ()); return m; } std::map<std::string, std::set<std::string> > base_properties::all_dynamic_properties; std::set<std::string> base_properties::dynamic_property_names (const std::string& cname) { return all_dynamic_properties[cname]; } bool base_properties::has_dynamic_property (const std::string& pname, const std::string& cname) { const std::set<std::string>& dynprops = dynamic_property_names (cname); return dynprops.find (pname) != dynprops.end (); } void base_properties::set_dynamic (const caseless_str& pname, const std::string& cname, const octave_value& val) { std::map<caseless_str, property, cmp_caseless_str>::iterator it = all_props.find (pname); if (it != all_props.end ()) it->second.set (val); else error ("set: unknown property \"%s\"", pname.c_str ()); if (! error_state) { all_dynamic_properties[cname].insert (pname); mark_modified (); } } property base_properties::get_property_dynamic (const caseless_str& name) { std::map<caseless_str, property, cmp_caseless_str>::const_iterator it = all_props.find (name); if (it == all_props.end ()) { error ("get_property: unknown property \"%s\"", name.c_str ()); return property (); } else return it->second; } void base_properties::remove_child (const graphics_handle& h) { octave_idx_type k = -1; octave_idx_type n = children.numel (); for (octave_idx_type i = 0; i < n; i++) { if (h.value () == children(i)) { k = i; break; } } if (k >= 0) { Matrix new_kids (n-1, 1); octave_idx_type j = 0; for (octave_idx_type i = 0; i < n; i++) { if (i != k) new_kids(j++) = children(i); } children = new_kids; mark_modified (); } } void base_properties::set_parent (const octave_value& val) { double tmp = val.double_value (); graphics_handle new_parent = octave_NaN; if (! error_state) { new_parent = gh_manager::lookup (tmp); if (new_parent.ok ()) { graphics_object parent_obj = gh_manager::get_object (get_parent ()); parent_obj.remove_child (__myhandle__); parent = new_parent.as_octave_value (); ::adopt (parent.handle_value (), __myhandle__); } else error ("set: invalid graphics handle (= %g) for parent", tmp); } else error ("set: expecting parent to be a graphics handle"); } void base_properties::set_children (const octave_value& val) { children = maybe_set_children (children, val); } void base_properties::mark_modified (void) { __modified__ = "on"; graphics_object parent_obj = gh_manager::get_object (get_parent ()); if (parent_obj) parent_obj.mark_modified (); } void base_properties::override_defaults (base_graphics_object& obj) { graphics_object parent_obj = gh_manager::get_object (get_parent ()); if (parent_obj) parent_obj.override_defaults (obj); } void base_properties::update_axis_limits (const std::string& axis_type) const { graphics_object obj = gh_manager::get_object (__myhandle__); if (obj) obj.update_axis_limits (axis_type); } void base_properties::delete_children (void) { octave_idx_type n = children.numel (); // A callback function might have already deleted the child, // so check before deleting for (octave_idx_type i = 0; i < n; i++) { graphics_object go = gh_manager::get_object (children(i)); if (go.valid_object ()) gh_manager::free (children(i)); } } graphics_backend base_properties::get_backend (void) const { graphics_object go = gh_manager::get_object (get_parent ()); if (go) return go.get_backend (); else return graphics_backend (); } void base_properties::update_boundingbox (void) { Matrix kids = get_children (); for (int i = 0; i < kids.numel (); i++) { graphics_object go = gh_manager::get_object (kids(i)); if (go.valid_object ()) go.get_properties ().update_boundingbox (); } } void base_properties::add_listener (const caseless_str& nm, const octave_value& v, listener_mode mode) { property p = get_property (nm); if (! error_state && p.ok ()) p.add_listener (v, mode); } void base_properties::delete_listener (const caseless_str& nm, const octave_value& v, listener_mode mode) { property p = get_property (nm); if (! error_state && p.ok ()) p.delete_listener (v, mode); } // --------------------------------------------------------------------- class gnuplot_backend : public base_graphics_backend { public: gnuplot_backend (void) : base_graphics_backend ("gnuplot") { } ~gnuplot_backend (void) { } bool is_valid (void) const { return true; } void object_destroyed (const graphics_object& go) { if (go.isa ("figure")) { const figure::properties& props = dynamic_cast<const figure::properties&> (go.get_properties ()); send_quit (props.get___plot_stream__ ()); } } void property_changed (const graphics_object& go, int id) { if (go.isa ("figure")) { graphics_object obj (go); figure::properties& props = dynamic_cast<figure::properties&> (obj.get_properties ()); switch (id) { case base_properties::VISIBLE: if (! props.is_visible ()) { send_quit (props.get___plot_stream__ ()); props.set___plot_stream__ (Matrix ()); props.set___enhanced__ (false); } break; } } } void redraw_figure (const graphics_object& go) const { octave_value_list args; args(0) = go.get_handle ().as_octave_value (); feval ("gnuplot_drawnow", args); } void print_figure (const graphics_object& go, const std::string& term, const std::string& file, bool mono, const std::string& debug_file) const { octave_value_list args; if (! debug_file.empty ()) args(4) = debug_file; args(3) = mono; args(2) = file; args(1) = term; args(0) = go.get_handle ().as_octave_value (); feval ("gnuplot_drawnow", args); } Matrix get_canvas_size (const graphics_handle&) const { Matrix sz (1, 2, 0.0); return sz; } double get_screen_resolution (void) const { return 72.0; } Matrix get_screen_size (void) const { return Matrix (1, 2, 0.0); } private: void send_quit (const octave_value& pstream) const { if (! pstream.is_empty ()) { octave_value_list args; Matrix fids = pstream.matrix_value (); if (! error_state) { args(1) = "\nquit;\n"; args(0) = fids(0); feval ("fputs", args); args.resize (1); feval ("fflush", args); feval ("pclose", args); if (fids.numel () > 1) { args(0) = fids(1); feval ("pclose", args); if (fids.numel () > 2) { args(0) = fids(2); feval ("waitpid", args); } } } } } }; graphics_backend graphics_backend::default_backend (void) { if (available_backends.size () == 0) register_backend (new gnuplot_backend ()); return available_backends["gnuplot"]; } std::map<std::string, graphics_backend> graphics_backend::available_backends; // --------------------------------------------------------------------- void base_graphics_object::update_axis_limits (const std::string& axis_type) { if (valid_object ()) { graphics_object parent_obj = gh_manager::get_object (get_parent ()); if (parent_obj) parent_obj.update_axis_limits (axis_type); } else error ("base_graphics_object::update_axis_limits: invalid graphics object"); } void base_graphics_object::remove_all_listeners (void) { Octave_map m = get (true).map_value (); for (Octave_map::const_iterator pa = m.begin (); pa != m.end (); pa++) { // FIXME -- there has to be a better way. I think we want to // ask whether it is OK to delete the listener for the given // property. How can we know in advance that it will be OK? unwind_protect::frame_id_t uwp_frame = unwind_protect::begin_frame (); unwind_protect::protect_var (discard_error_messages); unwind_protect::protect_var (error_state); discard_error_messages = true; property p = get_properties ().get_property (pa->first); if (! error_state && p.ok ()) p.delete_listener (); unwind_protect::run_frame (uwp_frame); } } // --------------------------------------------------------------------- #include "graphics-props.cc" // --------------------------------------------------------------------- void root_figure::properties::set_currentfigure (const octave_value& v) { graphics_handle val (v); if (error_state) return; if (xisnan (val.value ()) || is_handle (val)) { currentfigure = val; gh_manager::push_figure (val); } else gripe_set_invalid ("currentfigure"); } void root_figure::properties::set_callbackobject (const octave_value& v) { graphics_handle val (v); if (error_state) return; if (xisnan (val.value ())) { if (! cbo_stack.empty ()) { val = cbo_stack.front (); cbo_stack.pop_front (); } callbackobject = val; } else if (is_handle (val)) { if (get_callbackobject ().ok ()) cbo_stack.push_front (get_callbackobject ()); callbackobject = val; } else gripe_set_invalid ("callbackobject"); } void root_figure::properties::update_units (void) { caseless_str xunits = get_units (); Matrix ss = default_screensize (); double dpi = get_screenpixelsperinch (); if (xunits.compare ("inches")) { ss(0) = 0; ss(1) = 0; ss(2) /= dpi; ss(3) /= dpi; } else if (xunits.compare ("centimeters")) { ss(0) = 0; ss(1) = 0; ss(2) *= 2.54 / dpi; ss(3) *= 2.54 / dpi; } else if (xunits.compare ("normalized")) { ss = Matrix (1, 4, 1.0); } else if (xunits.compare ("points")) { ss(0) = 0; ss(1) = 0; ss(2) *= 72 / dpi; ss(3) *= 72 / dpi; } set_screensize (ss); } void root_figure::properties::remove_child (const graphics_handle& gh) { gh_manager::pop_figure (gh); graphics_handle cf = gh_manager::current_figure (); xset (0, "currentfigure", cf.value ()); base_properties::remove_child (gh); } property_list root_figure::factory_properties = root_figure::init_factory_properties (); // --------------------------------------------------------------------- void figure::properties::set_currentaxes (const octave_value& v) { graphics_handle val (v); if (error_state) return; if (xisnan (val.value ()) || is_handle (val)) currentaxes = val; else gripe_set_invalid ("currentaxes"); } void figure::properties::remove_child (const graphics_handle& gh) { base_properties::remove_child (gh); if (gh == currentaxes.handle_value ()) { graphics_handle new_currentaxes; for (octave_idx_type i = 0; i < children.numel (); i++) { graphics_handle kid = children(i); graphics_object go = gh_manager::get_object (kid); if (go.isa ("axes")) { new_currentaxes = kid; break; } } currentaxes = new_currentaxes; } } void figure::properties::set_visible (const octave_value& val) { std::string s = val.string_value (); if (! error_state) { if (s == "on") xset (0, "currentfigure", __myhandle__.value ()); visible = val; } } Matrix figure::properties::get_boundingbox (bool) const { Matrix screen_size = xget (0, "screensize").matrix_value ().extract_n (0, 2, 1, 2); Matrix pos; pos = convert_position (get_position ().matrix_value (), get_units (), "pixels", screen_size); pos(0)--; pos(1)--; pos(1) = screen_size(1) - pos(1) - pos(3); return pos; } void figure::properties::set_boundingbox (const Matrix& bb) { Matrix screen_size = xget (0, "screensize").matrix_value ().extract_n (0, 2, 1, 2); Matrix pos = bb; pos(1) = screen_size(1) - pos(1) - pos(3); pos(1)++; pos(0)++; pos = convert_position (pos, "pixels", get_units (), screen_size); set_position (pos); } void figure::properties::set_position (const octave_value& v) { if (! error_state) { Matrix old_bb, new_bb; old_bb = get_boundingbox (); position = v; new_bb = get_boundingbox (); if (old_bb != new_bb) { if (old_bb(2) != new_bb(2) || old_bb(3) != new_bb(3)) { execute_resizefcn (); update_boundingbox (); } } mark_modified (); } } std::string figure::properties::get_title (void) const { if (is_numbertitle ()) { std::ostringstream os; std::string nm = get_name (); os << "Figure " << __myhandle__.value (); if (! nm.empty ()) os << ": " << get_name (); return os.str (); } else return get_name (); } octave_value figure::get_default (const caseless_str& name) const { octave_value retval = default_properties.lookup (name); if (retval.is_undefined ()) { graphics_handle parent = get_parent (); graphics_object parent_obj = gh_manager::get_object (parent); retval = parent_obj.get_default (name); } return retval; } // --------------------------------------------------------------------- void axes::properties::init (void) { position.add_constraint (dim_vector (1, 4)); position.add_constraint (dim_vector (0, 0)); outerposition.add_constraint (dim_vector (1, 4)); colororder.add_constraint (dim_vector (-1, 3)); dataaspectratio.add_constraint (dim_vector (1, 3)); plotboxaspectratio.add_constraint (dim_vector (1, 3)); xlim.add_constraint (2); ylim.add_constraint (2); zlim.add_constraint (2); clim.add_constraint (2); alim.add_constraint (2); xtick.add_constraint (dim_vector (1, -1)); ytick.add_constraint (dim_vector (1, -1)); ztick.add_constraint (dim_vector (1, -1)); Matrix vw (1, 2, 0); vw(1) = 90; view = vw; view.add_constraint (dim_vector (1, 2)); cameraposition.add_constraint (dim_vector (1, 3)); Matrix upv (1, 3, 0.0); upv(2) = 1.0; cameraupvector = upv; cameraupvector.add_constraint (dim_vector (1, 3)); currentpoint.add_constraint (dim_vector (2, 3)); ticklength.add_constraint (dim_vector (1, 2)); tightinset.add_constraint (dim_vector (1, 4)); x_zlim.resize (1, 2); sx = "linear"; sy = "linear"; sz = "linear"; calc_ticklabels (xtick, xticklabel, xscale.is ("log")); calc_ticklabels (ytick, yticklabel, yscale.is ("log")); calc_ticklabels (ztick, zticklabel, zscale.is ("log")); xset (xlabel.handle_value (), "handlevisibility", "off"); xset (ylabel.handle_value (), "handlevisibility", "off"); xset (zlabel.handle_value (), "handlevisibility", "off"); xset (title.handle_value (), "handlevisibility", "off"); xset (xlabel.handle_value (), "horizontalalignment", "center"); xset (ylabel.handle_value (), "horizontalalignment", "center"); xset (zlabel.handle_value (), "horizontalalignment", "right"); xset (title.handle_value (), "horizontalalignment", "center"); xset (xlabel.handle_value (), "verticalalignment", "cap"); xset (ylabel.handle_value (), "verticalalignment", "bottom"); xset (title.handle_value (), "verticalalignment", "bottom"); xset (ylabel.handle_value (), "rotation", 90.0); xset (zlabel.handle_value (), "visible", "off"); xset (xlabel.handle_value (), "clipping", "off"); xset (ylabel.handle_value (), "clipping", "off"); xset (zlabel.handle_value (), "clipping", "off"); xset (title.handle_value (), "clipping", "off"); adopt (xlabel.handle_value ()); adopt (ylabel.handle_value ()); adopt (zlabel.handle_value ()); adopt (title.handle_value ()); } void axes::properties::sync_positions (void) { #if 0 // FIXME -- this should take font metrics into consideration, // and also the fact that the colorbox leaves the outerposition // alone but alters the position. For now just don't adjust the // positions relative to each other. if (activepositionproperty.is ("outerposition")) { Matrix outpos = outerposition.get ().matrix_value (); Matrix defpos = default_axes_position (); Matrix pos(outpos); pos(0) = outpos(0) + defpos(0) * outpos(2); pos(1) = outpos(1) + defpos(1) * outpos(3); pos(2) = outpos(2) * defpos(2); pos(3) = outpos(3) * defpos(3); position = pos; } else { Matrix pos = position.get ().matrix_value (); pos(0) -= pos(2)*0.05; pos(1) -= pos(3)*0.05; pos(2) *= 1.1; pos(3) *= 1.1; outerposition = pos; } #endif update_transform (); } void axes::properties::set_text_child (handle_property& hp, const std::string& who, const octave_value& v) { graphics_handle val = ::reparent (v, "set", who, __myhandle__, false); if (! error_state) { xset (val, "handlevisibility", "off"); gh_manager::free (hp.handle_value ()); base_properties::remove_child (hp.handle_value ()); hp = val; adopt (hp.handle_value ()); } } void axes::properties::set_xlabel (const octave_value& v) { set_text_child (xlabel, "xlabel", v); } void axes::properties::set_ylabel (const octave_value& v) { set_text_child (ylabel, "ylabel", v); } void axes::properties::set_zlabel (const octave_value& v) { set_text_child (zlabel, "zlabel", v); } void axes::properties::set_title (const octave_value& v) { set_text_child (title, "title", v); } void axes::properties::set_defaults (base_graphics_object& obj, const std::string& mode) { box = "on"; key = "off"; keybox = "off"; keyreverse = "off"; keypos = 1.0; colororder = default_colororder (); dataaspectratio = Matrix (1, 3, 1.0); dataaspectratiomode = "auto"; layer = "bottom"; Matrix tlim (1, 2, 0.0); tlim(1) = 1; xlim = tlim; ylim = tlim; zlim = tlim; Matrix cl (1, 2, 0); cl(1) = 1; clim = cl; xlimmode = "auto"; ylimmode = "auto"; zlimmode = "auto"; climmode = "auto"; xgrid = "off"; ygrid = "off"; zgrid = "off"; xminorgrid = "off"; yminorgrid = "off"; zminorgrid = "off"; xtick = Matrix (); ytick = Matrix (); ztick = Matrix (); xtickmode = "auto"; ytickmode = "auto"; ztickmode = "auto"; xticklabel = ""; yticklabel = ""; zticklabel = ""; xticklabelmode = "auto"; yticklabelmode = "auto"; zticklabelmode = "auto"; color = color_values (1, 1, 1); xcolor = color_values ("black"); ycolor = color_values ("black"); zcolor = color_values ("black"); xscale = "linear"; yscale = "linear"; zscale = "linear"; xdir = "normal"; ydir = "normal"; zdir = "normal"; yaxislocation = "left"; xaxislocation = "bottom"; // Note: camera properties will be set through update_transform camerapositionmode = "auto"; cameratargetmode = "auto"; cameraupvectormode = "auto"; cameraviewanglemode = "auto"; plotboxaspectratio = Matrix (1, 3, 1.0); drawmode = "normal"; gridlinestyle = ":"; linestyleorder = "-"; linewidth = 0.5; minorgridlinestyle = ":"; // Note: plotboxaspectratio will be set through update_aspectratiors plotboxaspectratiomode = "auto"; projection = "orthographic"; tickdir = "in"; tickdirmode = "auto"; ticklength = default_axes_ticklength (); tightinset = Matrix (1, 4, 0.0); sx = "linear"; sy = "linear"; sz = "linear"; Matrix tview (1, 2, 0.0); tview(1) = 90; view = tview; visible = "on"; nextplot = "replace"; if (mode != "replace") { fontangle = "normal"; fontname = OCTAVE_DEFAULT_FONTNAME; fontsize = 12; fontunits = "points"; fontweight = "normal"; Matrix touterposition (1, 4, 0.0); touterposition(2) = 1; touterposition(3) = 1; outerposition = touterposition; position = default_axes_position (); activepositionproperty = "outerposition"; } delete_children (); children = Matrix (); xlabel = gh_manager::make_graphics_handle ("text", __myhandle__, false); ylabel = gh_manager::make_graphics_handle ("text", __myhandle__, false); zlabel = gh_manager::make_graphics_handle ("text", __myhandle__, false); title = gh_manager::make_graphics_handle ("text", __myhandle__, false); xset (xlabel.handle_value (), "handlevisibility", "off"); xset (ylabel.handle_value (), "handlevisibility", "off"); xset (zlabel.handle_value (), "handlevisibility", "off"); xset (title.handle_value (), "handlevisibility", "off"); xset (xlabel.handle_value (), "horizontalalignment", "center"); xset (ylabel.handle_value (), "horizontalalignment", "center"); xset (zlabel.handle_value (), "horizontalalignment", "right"); xset (title.handle_value (), "horizontalalignment", "center"); xset (xlabel.handle_value (), "verticalalignment", "cap"); xset (ylabel.handle_value (), "verticalalignment", "bottom"); xset (title.handle_value (), "verticalalignment", "bottom"); xset (ylabel.handle_value (), "rotation", 90.0); xset (zlabel.handle_value (), "visible", "off"); xset (xlabel.handle_value (), "clipping", "off"); xset (ylabel.handle_value (), "clipping", "off"); xset (zlabel.handle_value (), "clipping", "off"); xset (title.handle_value (), "clipping", "off"); adopt (xlabel.handle_value ()); adopt (ylabel.handle_value ()); adopt (zlabel.handle_value ()); adopt (title.handle_value ()); update_transform (); override_defaults (obj); } void axes::properties::delete_text_child (handle_property& hp) { graphics_handle h = hp.handle_value (); if (h.ok ()) { graphics_object go = gh_manager::get_object (h); if (go.valid_object ()) gh_manager::free (h); base_properties::remove_child (h); } // FIXME -- is it necessary to check whether the axes object is // being deleted now? I think this function is only called when an // individual child object is delete and not when the parent axes // object is deleted. if (! is_beingdeleted ()) { hp = gh_manager::make_graphics_handle ("text", __myhandle__, false); xset (hp.handle_value (), "handlevisibility", "off"); adopt (hp.handle_value ()); } } void axes::properties::remove_child (const graphics_handle& h) { if (xlabel.handle_value ().ok () && h == xlabel.handle_value ()) delete_text_child (xlabel); else if (ylabel.handle_value ().ok () && h == ylabel.handle_value ()) delete_text_child (ylabel); else if (zlabel.handle_value ().ok () && h == zlabel.handle_value ()) delete_text_child (zlabel); else if (title.handle_value ().ok () && h == title.handle_value ()) delete_text_child (title); else base_properties::remove_child (h); } Matrix base_properties::get_children (void) const { Matrix retval = children; graphics_object go = gh_manager::get_object (0); root_figure::properties& props = dynamic_cast<root_figure::properties&> (go.get_properties ()); if (! props.is_showhiddenhandles ()) { octave_idx_type k = 0; for (octave_idx_type i = 0; i < children.numel (); i++) { graphics_handle kid = children (i); if (gh_manager::is_handle_visible (kid)) retval(k++) = children(i); } retval.resize (k, 1); } return retval;; } inline Matrix xform_matrix (void) { Matrix m (4, 4, 0.0); for (int i = 0; i < 4; i++) m(i,i) = 1; return m; } inline ColumnVector xform_vector (void) { ColumnVector v (4, 0.0); v(3) = 1; return v; } inline ColumnVector xform_vector (double x, double y, double z) { ColumnVector v (4, 1.0); v(0) = x; v(1) = y; v(2) = z; return v; } inline ColumnVector transform (const Matrix& m, double x, double y, double z) { return (m * xform_vector (x, y, z)); } inline Matrix xform_scale (double x, double y, double z) { Matrix m (4, 4, 0.0); m(0,0) = x; m(1,1) = y; m(2,2) = z; m(3,3) = 1; return m; } inline Matrix xform_translate (double x, double y, double z) { Matrix m = xform_matrix (); m(0,3) = x; m(1,3) = y; m(2,3) = z; m(3,3) = 1; return m; } inline void scale (Matrix& m, double x, double y, double z) { m = m * xform_scale (x, y, z); } inline void translate (Matrix& m, double x, double y, double z) { m = m * xform_translate (x, y, z); } inline void xform (ColumnVector& v, const Matrix& m) { v = m*v; } inline void scale (ColumnVector& v, double x, double y, double z) { v(0) *= x; v(1) *= y; v(2) *= z; } inline void translate (ColumnVector& v, double x, double y, double z) { v(0) += x; v(1) += y; v(2) += z; } inline void normalize (ColumnVector& v) { double fact = 1.0/sqrt(v(0)*v(0)+v(1)*v(1)+v(2)*v(2)); scale (v, fact, fact, fact); } inline double dot (const ColumnVector& v1, const ColumnVector& v2) { return (v1(0)*v2(0)+v1(1)*v2(1)+v1(2)*v2(2)); } inline double norm (const ColumnVector& v) { return sqrt (dot (v, v)); } inline ColumnVector cross (const ColumnVector& v1, const ColumnVector& v2) { ColumnVector r = xform_vector (); r(0) = v1(1)*v2(2)-v1(2)*v2(1); r(1) = v1(2)*v2(0)-v1(0)*v2(2); r(2) = v1(0)*v2(1)-v1(1)*v2(0); return r; } inline Matrix unit_cube (void) { static double data[32] = { 0,0,0,1, 1,0,0,1, 0,1,0,1, 0,0,1,1, 1,1,0,1, 1,0,1,1, 0,1,1,1, 1,1,1,1}; Matrix m (4, 8); memcpy (m.fortran_vec (), data, sizeof(double)*32); return m; } inline ColumnVector cam2xform (const Array<double>& m) { ColumnVector retval (4, 1.0); memcpy (retval.fortran_vec (), m.fortran_vec (), sizeof(double)*3); return retval; } inline RowVector xform2cam (const ColumnVector& v) { return v.extract_n (0, 3).transpose (); } void axes::properties::update_camera (void) { double xd = (xdir_is ("normal") ? 1 : -1); double yd = (ydir_is ("normal") ? 1 : -1); double zd = (zdir_is ("normal") ? 1 : -1); Matrix xlimits = sx.scale (get_xlim ().matrix_value ()); Matrix ylimits = sy.scale (get_ylim ().matrix_value ()); Matrix zlimits = sz.scale (get_zlim ().matrix_value ()); double xo = xlimits(xd > 0 ? 0 : 1); double yo = ylimits(yd > 0 ? 0 : 1); double zo = zlimits(zd > 0 ? 0 : 1); Matrix pb = get_plotboxaspectratio ().matrix_value (); bool autocam = (camerapositionmode_is ("auto") && cameratargetmode_is ("auto") && cameraupvectormode_is ("auto") && cameraviewanglemode_is ("auto")); bool dowarp = (autocam && dataaspectratiomode_is("auto") && plotboxaspectratiomode_is ("auto")); ColumnVector c_eye (xform_vector ()); ColumnVector c_center (xform_vector ()); ColumnVector c_upv (xform_vector ()); if (cameratargetmode_is ("auto")) { c_center(0) = (xlimits(0)+xlimits(1))/2; c_center(1) = (ylimits(0)+ylimits(1))/2; c_center(2) = (zlimits(0)+zlimits(1))/2; cameratarget = xform2cam (c_center); } else c_center = cam2xform (get_cameratarget ().matrix_value ()); if (camerapositionmode_is ("auto")) { Matrix tview = get_view ().matrix_value (); double az = tview(0), el = tview(1); double d = 5*sqrt(pb(0)*pb(0)+pb(1)*pb(1)+pb(2)*pb(2)); if (el == 90 || el == -90) c_eye(2) = d*signum(el); else { az *= M_PI/180.0; el *= M_PI/180.0; c_eye(0) = d*cos(el)*sin(az); c_eye(1) = -d*cos(el)*cos(az); c_eye(2) = d*sin(el); } c_eye(0) = c_eye(0)*(xlimits(1)-xlimits(0))/(xd*pb(0))+c_center(0); c_eye(1) = c_eye(1)*(ylimits(1)-ylimits(0))/(yd*pb(1))+c_center(1); c_eye(2) = c_eye(2)*(zlimits(1)-zlimits(0))/(zd*pb(2))+c_center(2); cameraposition = xform2cam (c_eye); } else c_eye = cam2xform (get_cameraposition ().matrix_value ()); if (cameraupvectormode_is ("auto")) { Matrix tview = get_view ().matrix_value (); double az = tview(0), el = tview(1); if (el == 90 || el == -90) { c_upv(0) = -sin(az*M_PI/180.0)*(xlimits(1)-xlimits(0))/pb(0); c_upv(1) = cos(az*M_PI/180.0)*(ylimits(1)-ylimits(0))/pb(1); } else c_upv(2) = 1; cameraupvector = xform2cam (c_upv); } else c_upv = cam2xform (get_cameraupvector ().matrix_value ()); Matrix x_view = xform_matrix (); Matrix x_projection = xform_matrix (); Matrix x_viewport = xform_matrix (); Matrix x_normrender = xform_matrix (); Matrix x_pre = xform_matrix (); x_render = xform_matrix (); x_render_inv = xform_matrix (); scale (x_pre, pb(0), pb(1), pb(2)); translate (x_pre, -0.5, -0.5, -0.5); scale (x_pre, xd/(xlimits(1)-xlimits(0)), yd/(ylimits(1)-ylimits(0)), zd/(zlimits(1)-zlimits(0))); translate (x_pre, -xo, -yo, -zo); xform (c_eye, x_pre); xform (c_center, x_pre); scale (c_upv, pb(0)/(xlimits(1)-xlimits(0)), pb(1)/(ylimits(1)-ylimits(0)), pb(2)/(zlimits(1)-zlimits(0))); translate (c_center, -c_eye(0), -c_eye(1), -c_eye(2)); ColumnVector F (c_center), f (F), UP (c_upv); normalize (f); normalize (UP); if (std::abs (dot (f, UP)) > 1e-15) { double fa = 1/sqrt(1-f(2)*f(2)); scale (UP, fa, fa, fa); } ColumnVector s = cross (f, UP); ColumnVector u = cross (s, f); scale (x_view, 1, 1, -1); Matrix l = xform_matrix (); l(0,0) = s(0); l(0,1) = s(1); l(0,2) = s(2); l(1,0) = u(0); l(1,1) = u(1); l(1,2) = u(2); l(2,0) = -f(0); l(2,1) = -f(1); l(2,2) = -f(2); x_view = x_view * l; translate (x_view, -c_eye(0), -c_eye(1), -c_eye(2)); scale (x_view, pb(0), pb(1), pb(2)); translate (x_view, -0.5, -0.5, -0.5); Matrix x_cube = x_view * unit_cube (); ColumnVector cmin = x_cube.row_min (), cmax = x_cube.row_max (); double xM = cmax(0)-cmin(0); double yM = cmax(1)-cmin(1); Matrix bb = get_boundingbox (true); double v_angle; if (cameraviewanglemode_is ("auto")) { double af; // FIXME -- was this really needed? When compared to Matlab, it // does not seem to be required. Need investigation with concrete // backend to see results visually. if (false && dowarp) af = 1.0 / (xM > yM ? xM : yM); else { if ((bb(2)/bb(3)) > (xM/yM)) af = 1.0 / yM; else af = 1.0 / xM; } v_angle = 2 * (180.0 / M_PI) * atan (1 / (2 * af * norm (F))); cameraviewangle = v_angle; } else v_angle = get_cameraviewangle (); double pf = 1 / (2 * tan ((v_angle / 2) * M_PI / 180.0) * norm (F)); scale (x_projection, pf, pf, 1); if (dowarp) { xM *= pf; yM *= pf; translate (x_viewport, bb(0)+bb(2)/2, bb(1)+bb(3)/2, 0); scale (x_viewport, bb(2)/xM, -bb(3)/yM, 1); } else { double pix = 1; if (autocam) { if ((bb(2)/bb(3)) > (xM/yM)) pix = bb(3); else pix = bb(2); } else pix = (bb(2) < bb(3) ? bb(2) : bb(3)); translate (x_viewport, bb(0)+bb(2)/2, bb(1)+bb(3)/2, 0); scale (x_viewport, pix, -pix, 1); } x_normrender = x_viewport * x_projection * x_view; x_cube = x_normrender * unit_cube (); cmin = x_cube.row_min (); cmax = x_cube.row_max (); x_zlim.resize (1, 2); x_zlim(0) = cmin(2); x_zlim(1) = cmax(2); x_render = x_normrender; scale (x_render, xd/(xlimits(1)-xlimits(0)), yd/(ylimits(1)-ylimits(0)), zd/(zlimits(1)-zlimits(0))); translate (x_render, -xo, -yo, -zo); x_viewtransform = x_view; x_projectiontransform = x_projection; x_viewporttransform = x_viewport; x_normrendertransform = x_normrender; x_rendertransform = x_render; x_render_inv = x_render.inverse (); // Note: these matrices are a slight modified version of the regular // matrices, more suited for OpenGL rendering (x_gl_mat1 => light // => x_gl_mat2) x_gl_mat1 = x_view; scale (x_gl_mat1, xd/(xlimits(1)-xlimits(0)), yd/(ylimits(1)-ylimits(0)), zd/(zlimits(1)-zlimits(0))); translate (x_gl_mat1, -xo, -yo, -zo); x_gl_mat2 = x_viewport * x_projection; } void axes::properties::update_aspectratios (void) { Matrix xlimits = get_xlim ().matrix_value (); Matrix ylimits = get_ylim ().matrix_value (); Matrix zlimits = get_zlim ().matrix_value (); double dx = (xlimits(1)-xlimits(0)); double dy = (ylimits(1)-ylimits(0)); double dz = (zlimits(1)-zlimits(0)); if (dataaspectratiomode_is ("auto")) { double dmin = xmin (xmin (dx, dy), dz); Matrix da (1, 3, 0.0); da(0) = dx/dmin; da(1) = dy/dmin; da(2) = dz/dmin; dataaspectratio = da; } if (plotboxaspectratiomode_is ("auto")) { if (dataaspectratiomode_is ("auto")) plotboxaspectratio = Matrix (1, 3, 1.0); else { Matrix da = get_dataaspectratio ().matrix_value (); Matrix pba (1, 3, 0.0); pba(0) = dx/da(0); pba(1) = dy/da(1); pba(2) = dz/da(2); } } // FIXME -- if plotboxaspectratiomode is "manual", limits // and/or dataaspectratio might be adapted. } // The INTERNAL flag defines whether position or outerposition is used. Matrix axes::properties::get_boundingbox (bool internal) const { graphics_object obj = gh_manager::get_object (get_parent ()); Matrix parent_bb = obj.get_properties ().get_boundingbox (true); Matrix pos = (internal ? get_position ().matrix_value () : get_outerposition ().matrix_value ()); pos = convert_position (pos, get_units (), "pixels", parent_bb.extract_n (0, 2, 1, 2)); pos(0)--; pos(1)--; pos(1) = parent_bb(3) - pos(1) - pos(3); return pos; } ColumnVector graphics_xform::xform_vector (double x, double y, double z) { return ::xform_vector (x, y, z); } Matrix graphics_xform::xform_eye (void) { return ::xform_matrix (); } ColumnVector graphics_xform::transform (double x, double y, double z, bool use_scale) const { if (use_scale) { x = sx.scale (x); y = sy.scale (y); z = sz.scale (z); } return ::transform (xform, x, y, z); } ColumnVector graphics_xform::untransform (double x, double y, double z, bool use_scale) const { ColumnVector v = ::transform (xform_inv, x, y, z); if (use_scale) { v(0) = sx.unscale (v(0)); v(1) = sy.unscale (v(1)); v(2) = sz.unscale (v(2)); } return v; } octave_value axes::get_default (const caseless_str& name) const { octave_value retval = default_properties.lookup (name); if (retval.is_undefined ()) { graphics_handle parent = get_parent (); graphics_object parent_obj = gh_manager::get_object (parent); retval = parent_obj.get_default (name); } return retval; } // FIXME -- remove. // FIXME -- maybe this should go into array_property class? /* static void check_limit_vals (double& min_val, double& max_val, double& min_pos, const array_property& data) { double val = data.min_val (); if (! (xisinf (val) || xisnan (val)) && val < min_val) min_val = val; val = data.max_val (); if (! (xisinf (val) || xisnan (val)) && val > max_val) max_val = val; val = data.min_pos (); if (! (xisinf (val) || xisnan (val)) && val > 0 && val < min_pos) min_pos = val; } */ static void check_limit_vals (double& min_val, double& max_val, double& min_pos, const octave_value& data) { if (data.is_matrix_type ()) { Matrix m = data.matrix_value (); if (! error_state && m.numel () == 3) { double val; val = m(0); if (! (xisinf (val) || xisnan (val)) && val < min_val) min_val = val; val = m(1); if (! (xisinf (val) || xisnan (val)) && val > max_val) max_val = val; val = m(2); if (! (xisinf (val) || xisnan (val)) && val > 0 && val < min_pos) min_pos = val; } } } // magform(x) Returns (a, b), where x = a * 10^b, a >= 1., and b is // integral. static void magform (double x, double& a, int& b) { if (x == 0) { a = 0; b = 0; } else { double l = std::log10 (std::abs (x)); double r = std::fmod (l, 1.); a = std::pow (10.0, r); b = static_cast<int> (l-r); if (a < 1) { a *= 10; b -= 1; } if (x < 0) a = -a; } } // A translation from Tom Holoryd's python code at // http://kurage.nimh.nih.gov/tomh/tics.py // FIXME -- add log ticks double axes::properties::calc_tick_sep (double lo, double hi) { int ticint = 5; // Reference: Lewart, C. R., "Algorithms SCALE1, SCALE2, and // SCALE3 for Determination of Scales on Computer Generated // Plots", Communications of the ACM, 10 (1973), 639-640. // Also cited as ACM Algorithm 463. double a; int b, x; magform ((hi-lo)/ticint, a, b); static const double sqrt_2 = sqrt (2.0); static const double sqrt_10 = sqrt (10.0); static const double sqrt_50 = sqrt (50.0); if (a < sqrt_2) x = 1; else if (a < sqrt_10) x = 2; else if (a < sqrt_50) x = 5; else x = 10; return x * std::pow (10., b); } // Attempt to make "nice" limits from the actual max and min of the // data. For log plots, we will also use the smallest strictly positive // value. Matrix axes::properties::get_axis_limits (double xmin, double xmax, double min_pos, bool logscale) { Matrix retval; double min_val = xmin; double max_val = xmax; if (! (xisinf (min_val) || xisinf (max_val))) { if (logscale) { if (xisinf (min_pos)) { // warning ("axis: logscale with no positive values to plot"); return retval; } if (min_val <= 0) { warning ("axis: omitting nonpositive data in log plot"); min_val = min_pos; } // FIXME -- maybe this test should also be relative? if (std::abs (min_val - max_val) < sqrt (DBL_EPSILON)) { min_val *= 0.9; max_val *= 1.1; } min_val = pow (10, floor (log10 (min_val))); max_val = pow (10, ceil (log10 (max_val))); } else { if (min_val == 0 && max_val == 0) { min_val = -1; max_val = 1; } // FIXME -- maybe this test should also be relative? else if (std::abs (min_val - max_val) < sqrt (DBL_EPSILON)) { min_val -= 0.1 * std::abs (min_val); max_val += 0.1 * std::abs (max_val); } double tick_sep = calc_tick_sep (min_val , max_val); min_val = tick_sep * std::floor (min_val / tick_sep); max_val = tick_sep * ceil (max_val / tick_sep); } } retval.resize (1, 2); retval(0) = min_val; retval(1) = max_val; return retval; } void axes::properties::calc_ticks_and_lims (array_property& lims, array_property& ticks, bool limmode_is_auto, bool is_logscale) { // FIXME -- add log ticks and lims if (lims.get ().is_empty ()) return; double lo = (lims.get ().matrix_value ()) (0); double hi = (lims.get ().matrix_value ()) (1); // FIXME should this be checked for somewhere else? (i.e. set{x,y,z}lim) if (hi < lo) { double tmp = hi; hi = lo; lo = tmp; } if (is_logscale) { // FIXME we should check for negtives here hi = std::log10 (hi); lo = std::log10 (lo); } double tick_sep = calc_tick_sep (lo , hi); int i1 = static_cast<int> (std::floor (lo / tick_sep)); int i2 = static_cast<int> (std::ceil (hi / tick_sep)); if (limmode_is_auto) { // adjust limits to include min and max tics Matrix tmp_lims (1,2); tmp_lims(0) = tick_sep * i1; tmp_lims(1) = tick_sep * i2; if (is_logscale) { tmp_lims(0) = std::pow (10.,tmp_lims(0)); tmp_lims(1) = std::pow (10.,tmp_lims(1)); } lims = tmp_lims; } else { // adjust min and max tics if they are out of limits i1 = static_cast<int> (std::ceil (lo / tick_sep)); i2 = static_cast<int> (std::floor (hi / tick_sep)); } Matrix tmp_ticks (1, i2-i1+1); for (int i = 0; i <= i2-i1; i++) { tmp_ticks (i) = tick_sep * (i+i1); if (is_logscale) tmp_ticks (i) = std::pow (10., tmp_ticks (i)); } ticks = tmp_ticks; } void axes::properties::calc_ticklabels (const array_property& ticks, any_property& labels, bool /*logscale*/) { Matrix values = ticks.get ().matrix_value (); Cell c (values.dims ()); std::ostringstream os; for (int i = 0; i < values.numel (); i++) { os.str (std::string ()); os << values(i); c(i) = os.str (); } labels = c; } void get_children_limits (double& min_val, double& max_val, double& min_pos, const Matrix& kids, char limit_type) { octave_idx_type n = kids.numel (); switch (limit_type) { case 'x': for (octave_idx_type i = 0; i < n; i++) { graphics_object obj = gh_manager::get_object (kids(i)); if (obj.is_xliminclude ()) { octave_value lim = obj.get_xlim (); check_limit_vals (min_val, max_val, min_pos, lim); } } break; case 'y': for (octave_idx_type i = 0; i < n; i++) { graphics_object obj = gh_manager::get_object (kids(i)); if (obj.is_yliminclude ()) { octave_value lim = obj.get_ylim (); check_limit_vals (min_val, max_val, min_pos, lim); } } break; case 'z': for (octave_idx_type i = 0; i < n; i++) { graphics_object obj = gh_manager::get_object (kids(i)); if (obj.is_zliminclude ()) { octave_value lim = obj.get_zlim (); check_limit_vals (min_val, max_val, min_pos, lim); } } break; case 'c': for (octave_idx_type i = 0; i < n; i++) { graphics_object obj = gh_manager::get_object (kids(i)); if (obj.is_climinclude ()) { octave_value lim = obj.get_clim (); check_limit_vals (min_val, max_val, min_pos, lim); } } break; case 'a': for (octave_idx_type i = 0; i < n; i++) { graphics_object obj = gh_manager::get_object (kids(i)); if (obj.is_aliminclude ()) { octave_value lim = obj.get_alim (); check_limit_vals (min_val, max_val, min_pos, lim); } } break; default: break; } } static bool updating_axis_limits = false; void axes::update_axis_limits (const std::string& axis_type) { if (updating_axis_limits) return; Matrix kids = xproperties.get_children (); double min_val = octave_Inf; double max_val = -octave_Inf; double min_pos = octave_Inf; char update_type = 0; Matrix limits; if (axis_type == "xdata" || axis_type == "xscale" || axis_type == "xldata" || axis_type == "xudata" || axis_type == "xlimmode" || axis_type == "xliminclude" || axis_type == "xlim") { if (xproperties.xlimmode_is ("auto")) { get_children_limits (min_val, max_val, min_pos, kids, 'x'); limits = xproperties.get_axis_limits (min_val, max_val, min_pos, xproperties.xscale_is ("log")); update_type = 'x'; } } else if (axis_type == "ydata" || axis_type == "yscale" || axis_type == "ldata" || axis_type == "udata" || axis_type == "ylimmode" || axis_type == "yliminclude" || axis_type == "ylim") { if (xproperties.ylimmode_is ("auto")) { get_children_limits (min_val, max_val, min_pos, kids, 'y'); limits = xproperties.get_axis_limits (min_val, max_val, min_pos, xproperties.yscale_is ("log")); update_type = 'y'; } } else if (axis_type == "zdata" || axis_type == "zscale" || axis_type == "zlimmode" || axis_type == "zliminclude" || axis_type == "zlim") { if (xproperties.zlimmode_is ("auto")) { get_children_limits (min_val, max_val, min_pos, kids, 'z'); limits = xproperties.get_axis_limits (min_val, max_val, min_pos, xproperties.zscale_is ("log")); update_type = 'z'; } } else if (axis_type == "cdata" || axis_type == "climmode" || axis_type == "cdatamapping" || axis_type == "climinclude" || axis_type == "clim") { if (xproperties.climmode_is ("auto")) { get_children_limits (min_val, max_val, min_pos, kids, 'c'); if (min_val > max_val) { min_val = min_pos = 0; max_val = 1; } else if (min_val == max_val) max_val = min_val + 1; limits.resize (1, 2); limits(0) = min_val; limits(1) = max_val; update_type = 'c'; } } else if (axis_type == "alphadata" || axis_type == "alimmode" || axis_type == "alphadatamapping" || axis_type == "aliminclude" || axis_type == "alim") { if (xproperties.alimmode_is ("auto")) { get_children_limits (min_val, max_val, min_pos, kids, 'a'); if (min_val > max_val) { min_val = min_pos = 0; max_val = 1; } else if (min_val == max_val) max_val = min_val + 1; limits.resize (1, 2); limits(0) = min_val; limits(1) = max_val; update_type = 'a'; } } unwind_protect::protect_var (updating_axis_limits); updating_axis_limits = true; switch (update_type) { case 'x': xproperties.set_xlim (limits); xproperties.set_xlimmode ("auto"); xproperties.update_xlim (); break; case 'y': xproperties.set_ylim (limits); xproperties.set_ylimmode ("auto"); xproperties.update_ylim (); break; case 'z': xproperties.set_zlim (limits); xproperties.set_zlimmode ("auto"); xproperties.update_zlim (); break; case 'c': xproperties.set_clim (limits); xproperties.set_climmode ("auto"); break; case 'a': xproperties.set_alim (limits); xproperties.set_alimmode ("auto"); break; default: break; } xproperties.update_transform (); unwind_protect::run (); } inline double force_in_range (const double x, const double lower, const double upper) { if (x < lower) { return lower; } else if (x > upper) { return upper; } else { return x; } } void axes::properties::zoom_about_point (double x, double y, double factor, bool push_to_zoom_stack) { // FIXME: Do we need error checking here? Matrix xlims = get_xlim ().matrix_value (); Matrix ylims = get_ylim ().matrix_value (); // Get children axes limits Matrix kids = get_children (); double minx = octave_Inf; double maxx = -octave_Inf; double min_pos_x = octave_Inf; get_children_limits (minx, maxx, min_pos_x, kids, 'x'); double miny = octave_Inf; double maxy = -octave_Inf; double min_pos_y = octave_Inf; get_children_limits (miny, maxy, min_pos_y, kids, 'y'); // Perform the zooming xlims (0) = x + factor * (xlims (0) - x); xlims (1) = x + factor * (xlims (1) - x); ylims (0) = y + factor * (ylims (0) - y); ylims (1) = y + factor * (ylims (1) - y); // Make sure we stay within the range og the plot xlims (0) = force_in_range (xlims (0), minx, maxx); xlims (1) = force_in_range (xlims (1), minx, maxx); ylims (0) = force_in_range (ylims (0), miny, maxy); ylims (1) = force_in_range (ylims (1), miny, maxy); zoom (xlims, ylims, push_to_zoom_stack); } void axes::properties::zoom (const Matrix& xl, const Matrix& yl, bool push_to_zoom_stack) { if (push_to_zoom_stack) { zoom_stack.push_front (xlimmode.get ()); zoom_stack.push_front (xlim.get ()); zoom_stack.push_front (ylimmode.get ()); zoom_stack.push_front (ylim.get ()); } xlim = xl; xlimmode = "manual"; ylim = yl; ylimmode = "manual"; update_transform (); update_xlim (false); update_ylim (false); } void axes::properties::translate_view (double delta_x, double delta_y) { // FIXME: Do we need error checking here? Matrix xlims = get_xlim ().matrix_value (); Matrix ylims = get_ylim ().matrix_value (); // Get children axes limits Matrix kids = get_children (); double minx = octave_Inf; double maxx = -octave_Inf; double min_pos_x = octave_Inf; get_children_limits (minx, maxx, min_pos_x, kids, 'x'); double miny = octave_Inf; double maxy = -octave_Inf; double min_pos_y = octave_Inf; get_children_limits (miny, maxy, min_pos_y, kids, 'y'); // Make sure we don't exceed the borders if (delta_x > 0) delta_x = std::min (xlims (1) + delta_x, maxx) - xlims (1); else delta_x = std::max (xlims (0) + delta_x, minx) - xlims (0); xlims (0) = xlims (0) + delta_x; xlims (1) = xlims (1) + delta_x; if (delta_y > 0) delta_y = std::min (ylims (1) + delta_y, maxy) - ylims (1); else delta_y = std::max (ylims (0) + delta_y, miny) - ylims (0); ylims (0) = ylims (0) + delta_y; ylims (1) = ylims (1) + delta_y; zoom (xlims, ylims, false); } void axes::properties::unzoom (void) { if (zoom_stack.size () >= 4) { ylim = zoom_stack.front (); zoom_stack.pop_front (); ylimmode = zoom_stack.front (); zoom_stack.pop_front (); xlim = zoom_stack.front (); zoom_stack.pop_front (); xlimmode = zoom_stack.front (); zoom_stack.pop_front (); update_transform (); update_xlim (false); update_ylim (false); } } void axes::properties::clear_zoom_stack (void) { while (zoom_stack.size () > 4) zoom_stack.pop_front (); unzoom (); } // --------------------------------------------------------------------- Matrix line::properties::compute_xlim (void) const { Matrix m (1, 3); m(0) = xmin (xdata.min_val (), xmin (xldata.min_val (), xudata.min_val ())); m(1) = xmax (xdata.max_val (), xmax (xldata.max_val (), xudata.max_val ())); m(2) = xmin (xdata.min_pos (), xmin (xldata.min_pos (), xudata.min_pos ())); return m; } Matrix line::properties::compute_ylim (void) const { Matrix m (1, 3); m(0) = xmin (ydata.min_val (), xmin (ldata.min_val (), udata.min_val ())); m(1) = xmax (ydata.max_val (), xmax (ldata.max_val (), udata.max_val ())); m(2) = xmin (ydata.min_pos (), xmin (ldata.min_pos (), udata.min_pos ())); return m; } // --------------------------------------------------------------------- // Note: "text" code is entirely auto-generated // --------------------------------------------------------------------- // Note: "image" code is entirely auto-generated // --------------------------------------------------------------------- octave_value patch::properties::get_color_data (void) const { return convert_cdata (*this, get_facevertexcdata (), cdatamapping_is ("scaled"), 2); } // --------------------------------------------------------------------- octave_value surface::properties::get_color_data (void) const { return convert_cdata (*this, get_cdata (), cdatamapping_is ("scaled"), 3); } inline void cross_product (double x1, double y1, double z1, double x2, double y2, double z2, double& x, double& y, double& z) { x += (y1 * z2 - z1 * y2); y += (z1 * x2 - x1 * z2); z += (x1 * y2 - y1 * x2); } void surface::properties::update_normals (void) { if (normalmode_is ("auto")) { Matrix x = get_xdata ().matrix_value (); Matrix y = get_ydata ().matrix_value (); Matrix z = get_zdata ().matrix_value (); int p = z.columns (), q = z.rows (); int i1 = 0, i2 = 0, i3 = 0; int j1 = 0, j2 = 0, j3 = 0; bool x_mat = (x.rows () == q); bool y_mat = (y.columns () == p); NDArray n (dim_vector (q, p, 3), 0.0); for (int i = 0; i < p; i++) { if (y_mat) { i1 = i - 1; i2 = i; i3 = i + 1; } for (int j = 0; j < q; j++) { if (x_mat) { j1 = j - 1; j2 = j; j3 = j + 1; } double& nx = n(j, i, 0); double& ny = n(j, i, 1); double& nz = n(j, i, 2); if ((j > 0) && (i > 0)) // upper left quadrangle cross_product (x(j1,i-1)-x(j2,i), y(j-1,i1)-y(j,i2), z(j-1,i-1)-z(j,i), x(j2,i-1)-x(j1,i), y(j,i1)-y(j-1,i2), z(j,i-1)-z(j-1,i), nx, ny, nz); if ((j > 0) && (i < (p -1))) // upper right quadrangle cross_product (x(j1,i+1)-x(j2,i), y(j-1,i3)-y(j,i2), z(j-1,i+1)-z(j,i), x(j1,i)-x(j2,i+1), y(j-1,i2)-y(j,i3), z(j-1,i)-z(j,i+1), nx, ny, nz); if ((j < (q - 1)) && (i > 0)) // lower left quadrangle cross_product (x(j2,i-1)-x(j3,i), y(j,i1)-y(j+1,i2), z(j,i-1)-z(j+1,i), x(j3,i-1)-x(j2,i), y(j+1,i1)-y(j,i2), z(j+1,i-1)-z(j,i), nx, ny, nz); if ((j < (q - 1)) && (i < (p -1))) // lower right quadrangle cross_product (x(j3,i)-x(j2,i+1), y(j+1,i2)-y(j,i3), z(j+1,i)-z(j,i+1), x(j3,i+1)-x(j2,i), y(j+1,i3)-y(j,i2), z(j+1,i+1)-z(j,i), nx, ny, nz); double d = - std::max(std::max(fabs(nx), fabs(ny)), fabs(nz)); nx /= d; ny /= d; nz /= d; } } vertexnormals = n; } } // --------------------------------------------------------------------- void hggroup::update_axis_limits (const std::string& axis_type) { Matrix kids = xproperties.get_children (); double min_val = octave_Inf; double max_val = -octave_Inf; double min_pos = octave_Inf; char update_type = 0; if (axis_type == "xlim" || axis_type == "xliminclude") { get_children_limits (min_val, max_val, min_pos, kids, 'x'); update_type = 'x'; } else if (axis_type == "ylim" || axis_type == "yliminclude") { get_children_limits (min_val, max_val, min_pos, kids, 'y'); update_type = 'y'; } else if (axis_type == "zlim" || axis_type == "zliminclude") { get_children_limits (min_val, max_val, min_pos, kids, 'z'); update_type = 'z'; } else if (axis_type == "clim" || axis_type == "climinclude") { get_children_limits (min_val, max_val, min_pos, kids, 'c'); update_type = 'c'; } else if (axis_type == "alim" || axis_type == "aliminclude") { get_children_limits (min_val, max_val, min_pos, kids, 'a'); update_type = 'a'; } Matrix limits (1, 3, 0.0); limits(0) = min_val; limits(1) = max_val; limits(2) = min_pos; switch (update_type) { case 'x': xproperties.set_xlim (limits); break; case 'y': xproperties.set_ylim (limits); break; case 'z': xproperties.set_zlim (limits); break; case 'c': xproperties.set_clim (limits); break; case 'a': xproperties.set_alim (limits); break; default: break; } base_graphics_object::update_axis_limits (axis_type); } // --------------------------------------------------------------------- octave_value base_graphics_object::get_default (const caseless_str& name) const { graphics_handle parent = get_parent (); graphics_object parent_obj = gh_manager::get_object (parent); return parent_obj.get_default (type () + name); } octave_value base_graphics_object::get_factory_default (const caseless_str& name) const { graphics_object parent_obj = gh_manager::get_object (0); return parent_obj.get_factory_default (type () + name); } // We use a random value for the handle to avoid issues with plots and // scalar values for the first argument. gh_manager::gh_manager (void) : handle_map (), handle_free_list (), next_handle (-1.0 - (rand () + 1.0) / (RAND_MAX + 2.0)) { handle_map[0] = graphics_object (new root_figure ()); // Make sure the default backend is registered. graphics_backend::default_backend (); } graphics_handle gh_manager::do_make_graphics_handle (const std::string& go_name, const graphics_handle& p, bool do_createfcn) { graphics_handle h = get_handle (go_name); base_graphics_object *go = 0; go = make_graphics_object_from_type (go_name, h, p); if (go) { graphics_object obj (go); handle_map[h] = obj; if (do_createfcn) go->get_properties ().execute_createfcn (); // notify backend graphics_backend backend = go->get_backend (); if (backend) backend.object_created (obj); } else error ("gh_manager::do_make_graphics_handle: invalid object type `%s'", go_name.c_str ()); return h; } graphics_handle gh_manager::do_make_figure_handle (double val) { graphics_handle h = val; base_graphics_object* go = new figure (h, 0); graphics_object obj (go); handle_map[h] = obj; // notify backend graphics_backend backend = go->get_backend (); if (backend) backend.object_created (obj); return h; } void gh_manager::do_push_figure (const graphics_handle& h) { do_pop_figure (h); figure_list.push_front (h); } void gh_manager::do_pop_figure (const graphics_handle& h) { for (figure_list_iterator p = figure_list.begin (); p != figure_list.end (); p++) { if (*p == h) { figure_list.erase (p); break; } } } class callback_event : public base_graphics_event { public: callback_event (const graphics_handle& h, const std::string& name, const octave_value& data = Matrix ()) : base_graphics_event (), handle (h), callback_name (name), callback_data (data) { } void execute (void) { gh_manager::execute_callback (handle, callback_name, callback_data); } private: callback_event (void) : base_graphics_event () { } private: graphics_handle handle; std::string callback_name; octave_value callback_data; }; class function_event : public base_graphics_event { public: function_event (graphics_event::event_fcn fcn, void* data = 0) : base_graphics_event (), function (fcn), function_data (data) { } void execute (void) { function (function_data); } private: function_event (void) : base_graphics_event () { } private: graphics_event::event_fcn function; void* function_data; }; class set_event : public base_graphics_event { public: set_event (const graphics_handle& h, const std::string& name, const octave_value& value) : base_graphics_event (), handle (h), property_name (name), property_value (value) { } void execute (void) { gh_manager::autolock guard; xset (handle, property_name, property_value); } private: set_event (void) : base_graphics_event () { } private: graphics_handle handle; std::string property_name; octave_value property_value; }; graphics_event graphics_event::create_callback_event (const graphics_handle& h, const std::string& name, const octave_value& data) { graphics_event e; e.rep = new callback_event (h, name, data); return e; } graphics_event graphics_event::create_function_event (graphics_event::event_fcn fcn, void *data) { graphics_event e; e.rep = new function_event (fcn, data); return e; } graphics_event graphics_event::create_set_event (const graphics_handle& h, const std::string& name, const octave_value& data) { graphics_event e; e.rep = new set_event (h, name, data); return e; } static void xset_gcbo (const graphics_handle& h) { graphics_object go = gh_manager::get_object (0); root_figure::properties& props = dynamic_cast<root_figure::properties&> (go.get_properties ()); props.set_callbackobject (h.as_octave_value ()); } void gh_manager::do_restore_gcbo (void) { gh_manager::autolock guard; callback_objects.pop_front (); xset_gcbo (callback_objects.empty () ? graphics_handle () : callback_objects.front ().get_handle ()); } void gh_manager::do_execute_callback (const graphics_handle& h, const octave_value& cb_arg, const octave_value& data) { octave_value_list args; octave_function *fcn = 0; args(0) = h.as_octave_value (); if (data.is_defined ()) args(1) = data; else args(1) = Matrix (); unwind_protect::frame_id_t uwp_frame = unwind_protect::begin_frame (); unwind_protect::add_fcn (gh_manager::restore_gcbo); if (true) { gh_manager::autolock guard; callback_objects.push_front (get_object (h)); xset_gcbo (h); } BEGIN_INTERRUPT_WITH_EXCEPTIONS; // Copy CB because "function_value" method is non-const. octave_value cb = cb_arg; if (cb.is_function_handle ()) fcn = cb.function_value (); else if (cb.is_string ()) { int status; std::string s = cb.string_value (); eval_string (s, false, status); } else if (cb.is_cell () && cb.length () > 0 && (cb.rows () == 1 || cb.columns () == 1) && cb.cell_value ()(0).is_function_handle ()) { Cell c = cb.cell_value (); fcn = c(0).function_value (); if (! error_state) { for (int i = 1; i < c.length () ; i++) args(1+i) = c(i); } } else { std::string nm = cb.class_name (); error ("trying to execute non-executable object (class = %s)", nm.c_str ()); } if (fcn && ! error_state) feval (fcn, args); END_INTERRUPT_WITH_EXCEPTIONS; unwind_protect::run_frame (uwp_frame); } void gh_manager::do_post_event (const graphics_event& e) { event_queue.push_back (e); command_editor::add_event_hook (gh_manager::process_events); } void gh_manager::do_post_callback (const graphics_handle& h, const std::string name, const octave_value& data) { gh_manager::autolock guard; graphics_object go = get_object (h); if (go.valid_object ()) { if (callback_objects.empty ()) do_post_event (graphics_event::create_callback_event (h, name, data)); else { const graphics_object& current = callback_objects.front (); if (current.get_properties ().is_interruptible ()) do_post_event (graphics_event::create_callback_event (h, name, data)); else { caseless_str busy_action (go.get_properties ().get_busyaction ()); if (busy_action.compare ("queue")) do_post_event (graphics_event::create_callback_event (h, name, data)); else { caseless_str cname (name); if (cname.compare ("deletefcn") || cname.compare ("createfcn") || (go.isa ("figure") && (cname.compare ("closerequestfcn") || cname.compare ("resizefcn")))) do_post_event (graphics_event::create_callback_event (h, name, data)); } } } } } void gh_manager::do_post_function (graphics_event::event_fcn fcn, void* fcn_data) { gh_manager::autolock guard; do_post_event (graphics_event::create_function_event (fcn, fcn_data)); } void gh_manager::do_post_set (const graphics_handle& h, const std::string name, const octave_value& value) { gh_manager::autolock guard; do_post_event (graphics_event::create_set_event (h, name, value)); } int gh_manager::do_process_events (bool force) { graphics_event e; do { e = graphics_event (); gh_manager::lock (); if (! event_queue.empty ()) { if (callback_objects.empty () || force) { e = event_queue.front (); event_queue.pop_front (); } else { const graphics_object& go = callback_objects.front (); if (go.get_properties ().is_interruptible ()) { e = event_queue.front (); event_queue.pop_front (); } } } gh_manager::unlock (); if (e.ok ()) e.execute (); } while (e.ok ()); gh_manager::lock (); if (event_queue.empty ()) command_editor::remove_event_hook (gh_manager::process_events); gh_manager::unlock (); return 0; } property_list::plist_map_type root_figure::init_factory_properties (void) { property_list::plist_map_type plist_map; plist_map["figure"] = figure::properties::factory_defaults (); plist_map["axes"] = axes::properties::factory_defaults (); plist_map["line"] = line::properties::factory_defaults (); plist_map["text"] = text::properties::factory_defaults (); plist_map["image"] = image::properties::factory_defaults (); plist_map["patch"] = patch::properties::factory_defaults (); plist_map["surface"] = surface::properties::factory_defaults (); plist_map["hggroup"] = hggroup::properties::factory_defaults (); return plist_map; } // --------------------------------------------------------------------- DEFUN (ishandle, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} ishandle (@var{h})\n\ Return true if @var{h} is a graphics handle and false otherwise.\n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; if (args.length () == 1) retval = is_handle (args(0)); else print_usage (); return retval; } DEFUN (set, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} set (@var{h}, @var{p}, @var{v}, @dots{})\n\ Set the named property value or vector @var{p} to the value @var{v}\n\ for the graphics handle @var{h}.\n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; int nargin = args.length (); if (nargin > 0) { ColumnVector hcv (args(0).vector_value ()); if (! error_state) { bool request_drawnow = false; for (octave_idx_type n = 0; n < hcv.length (); n++) { graphics_object obj = gh_manager::get_object (hcv(n)); if (obj) { obj.set (args.splice (0, 1)); request_drawnow = true; } else { error ("set: invalid handle (= %g)", hcv(n)); break; } } if (! error_state && request_drawnow) Vdrawnow_requested = true; } else error ("set: expecting graphics handle as first argument"); } else print_usage (); return retval; } DEFUN (get, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} get (@var{h}, @var{p})\n\ Return the named property @var{p} from the graphics handle @var{h}.\n\ If @var{p} is omitted, return the complete property list for @var{h}.\n\ If @var{h} is a vector, return a cell array including the property\n\ values or lists respectively.\n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; Cell vals; int nargin = args.length (); if (nargin == 1 || nargin == 2) { ColumnVector hcv (args(0).vector_value ()); if (! error_state) { octave_idx_type len = hcv.length (); vals.resize (dim_vector (len, 1)); for (octave_idx_type n = 0; n < len; n++) { graphics_object obj = gh_manager::get_object (hcv(n)); if (obj) { if (nargin == 1) vals(n) = obj.get (); else { caseless_str property = args(1).string_value (); if (! error_state) vals(n) = obj.get (property); else { error ("get: expecting property name as second argument"); break; } } } else { error ("get: invalid handle (= %g)", hcv(n)); break; } } } else error ("get: expecting graphics handle as first argument"); } else print_usage (); if (! error_state) { octave_idx_type len = vals.numel (); if (len > 1) retval = vals; else if (len == 1) retval = vals(0); } return retval; } // Return all properties from the graphics handle @var{h}. // If @var{h} is a vector, return a cell array including the // property values or lists respectively. DEFUN (__get__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __get__ (@var{h})\n\ Undocumented internal function.\n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; Cell vals; int nargin = args.length (); if (nargin == 1) { ColumnVector hcv (args(0).vector_value ()); if (! error_state) { octave_idx_type len = hcv.length (); vals.resize (dim_vector (len, 1)); for (octave_idx_type n = 0; n < len; n++) { graphics_object obj = gh_manager::get_object (hcv(n)); if (obj) vals(n) = obj.get (true); else { error ("get: invalid handle (= %g)", hcv(n)); break; } } } else error ("get: expecting graphics handle as first argument"); } else print_usage (); if (! error_state) { octave_idx_type len = vals.numel (); if (len > 1) retval = vals; else if (len == 1) retval = vals(0); } return retval; } static octave_value make_graphics_object (const std::string& go_name, const octave_value_list& args) { octave_value retval; double val = octave_NaN; octave_value_list xargs = args.splice (0, 1); caseless_str p ("parent"); for (int i = 0; i < xargs.length (); i++) if (xargs(i).is_string () && p.compare (xargs(i).string_value ())) { if (i < (xargs.length () - 1)) { val = xargs(i+1).double_value (); if (! error_state) { xargs = xargs.splice (i, 2); break; } } else error ("__go_%s__: missing value for parent property", go_name.c_str ()); } if (! error_state && xisnan (val)) val = args(0).double_value (); if (! error_state) { graphics_handle parent = gh_manager::lookup (val); if (parent.ok ()) { graphics_handle h = gh_manager::make_graphics_handle (go_name, parent, false); if (! error_state) { adopt (parent, h); xset (h, xargs); xcreatefcn (h); retval = h.value (); if (! error_state) Vdrawnow_requested = true; } else error ("__go%s__: unable to create graphics handle", go_name.c_str ()); } else error ("__go_%s__: invalid parent", go_name.c_str ()); } else error ("__go_%s__: invalid parent", go_name.c_str ()); return retval; } DEFUN (__go_figure__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_figure__ (@var{fignum})\n\ Undocumented internal function.\n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; if (args.length () > 0) { double val = args(0).double_value (); if (! error_state) { if (is_figure (val)) { graphics_handle h = gh_manager::lookup (val); xset (h, args.splice (0, 1)); retval = h.value (); } else { graphics_handle h = octave_NaN; if (xisnan (val)) h = gh_manager::make_graphics_handle ("figure", 0, false); else if (val > 0 && D_NINT (val) == val) h = gh_manager::make_figure_handle (val); else error ("__go_figure__: invalid figure number"); if (! error_state && h.ok ()) { adopt (0, h); xset (h, args.splice (0, 1)); xcreatefcn (h); retval = h.value (); } else error ("__go_figure__: failed to create figure handle"); } } else error ("__go_figure__: expecting figure number to be double value"); } else print_usage (); return retval; } #define GO_BODY(TYPE) \ gh_manager::autolock guard; \ \ octave_value retval; \ \ if (args.length () > 0) \ retval = make_graphics_object (#TYPE, args); \ else \ print_usage (); \ \ return retval DEFUN (__go_axes__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_axes__ (@var{parent})\n\ Undocumented internal function.\n\ @end deftypefn") { GO_BODY (axes); } DEFUN (__go_line__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_line__ (@var{parent})\n\ Undocumented internal function.\n\ @end deftypefn") { GO_BODY (line); } DEFUN (__go_text__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_text__ (@var{parent})\n\ Undocumented internal function.\n\ @end deftypefn") { GO_BODY (text); } DEFUN (__go_image__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_image__ (@var{parent})\n\ Undocumented internal function.\n\ @end deftypefn") { GO_BODY (image); } DEFUN (__go_surface__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_surface__ (@var{parent})\n\ Undocumented internal function.\n\ @end deftypefn") { GO_BODY (surface); } DEFUN (__go_patch__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_patch__ (@var{parent})\n\ Undocumented internal function.\n\ @end deftypefn") { GO_BODY (patch); } DEFUN (__go_hggroup__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_hggroup__ (@var{parent})\n\ Undocumented internal function.\n\ @end deftypefn") { GO_BODY (hggroup); } DEFUN (__go_delete__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_delete__ (@var{h})\n\ Undocumented internal function.\n\ @end deftypefn") { gh_manager::autolock guard; octave_value_list retval; if (args.length () == 1) { graphics_handle h = octave_NaN; const NDArray vals = args (0).array_value (); if (! error_state) { // Check is all the handles to delete are valid first // as callbacks might delete one of the handles we // later want to delete for (octave_idx_type i = 0; i < vals.numel (); i++) { h = gh_manager::lookup (vals.elem (i)); if (! h.ok ()) { error ("delete: invalid graphics object (= %g)", vals.elem (i)); break; } } if (! error_state) { for (octave_idx_type i = 0; i < vals.numel (); i++) { h = gh_manager::lookup (vals.elem (i)); if (h.ok ()) { graphics_object obj = gh_manager::get_object (h); // Don't do recursive deleting, due to callbacks if (! obj.get_properties ().is_beingdeleted ()) { graphics_handle parent_h = obj.get_parent (); graphics_object parent_obj = gh_manager::get_object (parent_h); // NOTE: free the handle before removing it from its // parent's children, such that the object's // state is correct when the deletefcn callback // is executed gh_manager::free (h); // A callback function might have already deleted // the parent if (parent_obj.valid_object ()) parent_obj.remove_child (h); Vdrawnow_requested = true; } } } } } else error ("delete: invalid graphics object"); } else print_usage (); return retval; } DEFUN (__go_axes_init__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_axes_init__ (@var{h}, @var{mode})\n\ Undocumented internal function.\n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; int nargin = args.length (); std::string mode = ""; if (nargin == 2) { mode = args(1).string_value (); if (error_state) return retval; } if (nargin == 1 || nargin == 2) { graphics_handle h = octave_NaN; double val = args(0).double_value (); if (! error_state) { h = gh_manager::lookup (val); if (h.ok ()) { graphics_object obj = gh_manager::get_object (h); obj.set_defaults (mode); h = gh_manager::lookup (val); if (! h.ok ()) error ("__go_axes_init__: axis deleted during initialization (= %g)", val); } else error ("__go_axes_init__: invalid graphics object (= %g)", val); } else error ("__go_axes_init__: invalid graphics object"); } else print_usage (); return retval; } DEFUN (__go_handles__, , , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_handles__ ()\n\ Undocumented internal function.\n\ @end deftypefn") { gh_manager::autolock guard; return octave_value (gh_manager::handle_list ()); } DEFUN (__go_figure_handles__, , , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_figure_handles__ ()\n\ Undocumented internal function.\n\ @end deftypefn") { gh_manager::autolock guard; return octave_value (gh_manager::figure_handle_list ()); } DEFUN (__go_execute_callback__, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} __go_execute_callback__ (@var{h}, @var{name})\n\ @deftypefnx {Built-in Function} {} __go_execute_callback__ (@var{h}, @var{name}, @var{param})\n\ Undocumented internal function.\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 2 || nargin == 3) { double val = args(0).double_value (); if (! error_state) { graphics_handle h = gh_manager::lookup (val); if (h.ok ()) { std::string name = args(1).string_value (); if (! error_state) { if (nargin == 2) gh_manager::execute_callback (h, name); else gh_manager::execute_callback (h, name, args(2)); } else error ("__go_execute_callback__: invalid callback name"); } else error ("__go_execute_callback__: invalid graphics object (= %g)", val); } else error ("__go_execute_callback__: invalid graphics object"); } else print_usage (); return retval; } DEFUN (available_backends, , , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} available_backends ()\n\ Return a cell array of registered graphics backends.\n\ @end deftypefn") { gh_manager::autolock guard; return octave_value (graphics_backend::available_backends_list ()); } DEFUN (drawnow, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} drawnow ()\n\ @deftypefnx {Built-in Function} {} drawnow (\"expose\")\n\ @deftypefnx {Built-in Function} {} drawnow (@var{term}, @var{file}, @var{mono}, @var{debug_file})\n\ Update figure windows and their children. The event queue is flushed and\n\ any callbacks generated are executed. With the optional argument\n\ @code{\"expose\"}, only graphic objects are updated and no other events or\n\ callbacks are processed.\n\ The third calling form of @code{drawnow} is for debugging and is\n\ undocumented.\n\ @end deftypefn") { static int drawnow_executing = 0; static bool __go_close_all_registered__ = false; octave_value retval; gh_manager::lock (); unwind_protect::frame_id_t uwp_frame = unwind_protect::begin_frame (); unwind_protect::protect_var (Vdrawnow_requested, false); unwind_protect::protect_var (drawnow_executing); if (++drawnow_executing <= 1) { if (! __go_close_all_registered__) { octave_add_atexit_function ("__go_close_all__"); __go_close_all_registered__ = true; } if (args.length () == 0 || args.length () == 1) { Matrix hlist = gh_manager::figure_handle_list (); for (int i = 0; ! error_state && i < hlist.length (); i++) { graphics_handle h = gh_manager::lookup (hlist(i)); if (h.ok () && h != 0) { graphics_object go = gh_manager::get_object (h); figure::properties& fprops = dynamic_cast <figure::properties&> (go.get_properties ()); if (fprops.is_modified ()) { if (fprops.is_visible ()) { gh_manager::unlock (); fprops.get_backend ().redraw_figure (go); gh_manager::lock (); } fprops.set_modified (false); } } } bool do_events = true; if (args.length () == 1) { caseless_str val (args(0).string_value ()); if (! error_state && val.compare ("expose")) do_events = false; else { error ("drawnow: invalid argument, expected `expose' as argument"); return retval; } } if (do_events) { gh_manager::unlock (); gh_manager::process_events (); gh_manager::lock (); } } else if (args.length () >= 2 && args.length () <= 4) { std::string term, file, debug_file; bool mono; term = args(0).string_value (); if (! error_state) { file = args(1).string_value (); if (! error_state) { size_t pos = file.find_last_of (file_ops::dir_sep_chars ()); if (pos != std::string::npos) { std::string dirname = file.substr (0, pos+1); file_stat fs (dirname); if (! (fs && fs.is_dir ())) { error ("drawnow: nonexistent directory `%s'", dirname.c_str ()); return retval; } } mono = (args.length () >= 3 ? args(2).bool_value () : false); if (! error_state) { debug_file = (args.length () > 3 ? args(3).string_value () : ""); if (! error_state) { graphics_handle h = gcf (); if (h.ok ()) { graphics_object go = gh_manager::get_object (h); gh_manager::unlock (); go.get_backend () .print_figure (go, term, file, mono, debug_file); gh_manager::lock (); } else error ("drawnow: nothing to draw"); } else error ("drawnow: invalid debug_file, expected a string value"); } else error ("drawnow: invalid colormode, expected a boolean value"); } else error ("drawnow: invalid file, expected a string value"); } else error ("drawnow: invalid terminal, expected a string value"); } else print_usage (); } unwind_protect::run_frame (uwp_frame); gh_manager::unlock (); return retval; } DEFUN (addlistener, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} addlistener (@var{h}, @var{prop}, @var{fcn})\n\ Register @var{fcn} as listener for the property @var{prop} of the graphics\n\ object @var{h}. Property listeners are executed (in order of registration)\n\ when the property is set. The new value is already available when the\n\ listeners are executed.\n\ \n\ @var{prop} must be a string naming a valid property in @var{h}.\n\ \n\ @var{fcn} can be a function handle, a string or a cell array whose first\n\ element is a function handle. If @var{fcn} is a function handle, the\n\ corresponding function should accept at least 2 arguments, that will be\n\ set to the object handle and the empty matrix respectively. If @var{fcn}\n\ is a string, it must be any valid octave expression. If @var{fcn} is a cell\n\ array, the first element must be a function handle with the same signature\n\ as described above. The next elements of the cell array are passed\n\ as additional arguments to the function.\n\ \n\ Example:\n\ \n\ @example\n\ @group\n\ function my_listener (h, dummy, p1)\n\ fprintf (\"my_listener called with p1=%s\\n\", p1);\n\ endfunction\n\ \n\ addlistener (gcf, \"position\", @{@@my_listener, \"my string\"@})\n\ @end group\n\ @end example\n\ \n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; if (args.length () == 3) { double h = args(0).double_value (); if (! error_state) { std::string pname = args(1).string_value (); if (! error_state) { graphics_handle gh = gh_manager::lookup (h); if (gh.ok ()) { graphics_object go = gh_manager::get_object (gh); go.add_property_listener (pname, args(2), POSTSET); } else error ("addlistener: invalid graphics object (= %g)", h); } else error ("addlistener: invalid property name, expected a string value"); } else error ("addlistener: invalid handle"); } else print_usage (); return retval; } DEFUN (dellistener, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} dellistener (@var{h}, @var{prop}, @var{fcn})\n\ Remove the registration of @var{fcn} as a listener for the property\n\ @var{prop} of the graphics object @var{h}. The function @var{fcn} must\n\ be the same variable (not just the same value), as was passed to the\n\ original call to @code{addlistener}.\n\ \n\ If @var{fcn} is not defined then all listener functions of @var{prop}\n\ are removed.\n\ \n\ Example:\n\ \n\ @example\n\ @group\n\ function my_listener (h, dummy, p1)\n\ fprintf (\"my_listener called with p1=%s\\n\", p1);\n\ endfunction\n\ \n\ c = @{@@my_listener, \"my string\"@};\n\ addlistener (gcf, \"position\", c);\n\ dellistener (gcf, \"position\", c);\n\ @end group\n\ @end example\n\ \n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; if (args.length () == 3 || args.length () == 2) { double h = args(0).double_value (); if (! error_state) { std::string pname = args(1).string_value (); if (! error_state) { graphics_handle gh = gh_manager::lookup (h); if (gh.ok ()) { graphics_object go = gh_manager::get_object (gh); if (args.length () == 2) go.delete_property_listener (pname, octave_value (), POSTSET); else go.delete_property_listener (pname, args(2), POSTSET); } else error ("dellistener: invalid graphics object (= %g)", h); } else error ("dellistener: invalid property name, expected a string value"); } else error ("dellistener: invalid handle"); } else print_usage (); return retval; } DEFUN (addproperty, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} addproperty (@var{name}, @var{h}, @var{type}, [@var{arg}, @dots{}])\n\ Create a new property named @var{name} in graphics object @var{h}.\n\ @var{type} determines the type of the property to create. @var{args}\n\ usually contains the default value of the property, but additional\n\ arguments might be given, depending on the type of the property.\n\ \n\ The supported property types are:\n\ \n\ @table @code\n\ @item string\n\ A string property. @var{arg} contains the default string value.\n\ @item any\n\ An un-typed property. This kind of property can hold any octave\n\ value. @var{args} contains the default value.\n\ @item radio\n\ A string property with a limited set of accepted values. The first\n\ argument must be a string with all accepted values separated by\n\ a vertical bar ('|'). The default value can be marked by enclosing\n\ it with a '@{' '@}' pair. The default value may also be given as\n\ an optional second string argument.\n\ @item boolean\n\ A boolean property. This property type is equivalent to a radio\n\ property with \"on|off\" as accepted values. @var{arg} contains\n\ the default property value.\n\ @item double\n\ A scalar double property. @var{arg} contains the default value.\n\ @item handle\n\ A handle property. This kind of property holds the handle of a\n\ graphics object. @var{arg} contains the default handle value.\n\ When no default value is given, the property is initialized to\n\ the empty matrix.\n\ @item data\n\ A data (matrix) property. @var{arg} contains the default data\n\ value. When no default value is given, the data is initialized to\n\ the empty matrix.\n\ @item color\n\ A color property. @var{arg} contains the default color value.\n\ When no default color is given, the property is set to black.\n\ An optional second string argument may be given to specify an\n\ additional set of accepted string values (like a radio property).\n\ @end table\n\ \n\ @var{type} may also be the concatenation of a core object type and\n\ a valid property name for that object type. The property created\n\ then has the same characteristics as the referenced property (type,\n\ possible values, hidden state@dots{}). This allows to clone an existing\n\ property into the graphics object @var{h}.\n\ \n\ Examples:\n\ \n\ @example\n\ @group\n\ addproperty (\"my_property\", gcf, \"string\", \"a string value\");\n\ addproperty (\"my_radio\", gcf, \"radio\", \"val_1|val_2|@{val_3@}\");\n\ addproperty (\"my_style\", gcf, \"linelinestyle\", \"--\");\n\ @end group\n\ @end example\n\ \n\ @end deftypefn") { gh_manager::autolock guard; octave_value retval; if (args.length () >= 3) { std::string name = args(0).string_value (); if (! error_state) { double h = args(1).double_value (); if (! error_state) { graphics_handle gh = gh_manager::lookup (h); if (gh.ok ()) { graphics_object go = gh_manager::get_object (gh); std::string type = args(2).string_value (); if (! error_state) { if (! go.get_properties ().has_property (name)) { property p = property::create (name, gh, type, args.splice (0, 3)); if (! error_state) go.get_properties ().insert_property (name, p); } else error ("addproperty: a `%s' property already exists in the graphics object", name.c_str ()); } else error ("addproperty: invalid property type, expected a string value"); } else error ("addproperty: invalid graphics object (= %g)", h); } else error ("addproperty: invalid handle value"); } else error ("addproperty: invalid property name, expected a string value"); } else print_usage (); return retval; } octave_value get_property_from_handle (double handle, const std::string& property, const std::string& func) { gh_manager::autolock guard; graphics_object obj = gh_manager::get_object (handle); octave_value retval; if (obj) retval = obj.get (caseless_str (property)); else error ("%s: invalid handle (= %g)", func.c_str(), handle); return retval; } bool set_property_in_handle (double handle, const std::string& property, const octave_value& arg, const std::string& func) { gh_manager::autolock guard; graphics_object obj = gh_manager::get_object (handle); int ret = false; if (obj) { obj.set (caseless_str (property), arg); if (! error_state) ret = true; } else error ("%s: invalid handle (= %g)", func.c_str(), handle); return ret; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */