Mercurial > hg > octave-nkf
view scripts/control/base/dre.m @ 11651:74de76325d12 release-3-0-x
more xGELSD workspace fixes
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 15 Feb 2008 18:55:45 -0500 |
parents | 1d0d7be2d0f8 |
children |
line wrap: on
line source
## Copyright (C) 1998, 2000, 2002, 2004, 2005, 2006, 2007 ## Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{tvals}, @var{plist}] =} dre (@var{sys}, @var{q}, @var{r}, @var{qf}, @var{t0}, @var{tf}, @var{ptol}, @var{maxits}) ## Solve the differential Riccati equation ## @ifinfo ## @example ## -d P/dt = A'P + P A - P B inv(R) B' P + Q ## P(tf) = Qf ## @end example ## @end ifinfo ## @iftex ## @tex ## $$ -{dP \over dt} = A^T P+PA-PBR^{-1}B^T P+Q $$ ## $$ P(t_f) = Q_f $$ ## @end tex ## @end iftex ## for the @acronym{LTI} system sys. Solution of ## standard @acronym{LTI} state feedback optimization ## @ifinfo ## @example ## min int(t0, tf) ( x' Q x + u' R u ) dt + x(tf)' Qf x(tf) ## @end example ## @end ifinfo ## @iftex ## @tex ## $$ \min \int_{t_0}^{t_f} x^T Q x + u^T R u dt + x(t_f)^T Q_f x(t_f) $$ ## @end tex ## @end iftex ## optimal input is ## @ifinfo ## @example ## u = - inv(R) B' P(t) x ## @end example ## @end ifinfo ## @iftex ## @tex ## $$ u = - R^{-1} B^T P(t) x $$ ## @end tex ## @end iftex ## @strong{Inputs} ## @table @var ## @item sys ## continuous time system data structure ## @item q ## state integral penalty ## @item r ## input integral penalty ## @item qf ## state terminal penalty ## @item t0 ## @itemx tf ## limits on the integral ## @item ptol ## tolerance (used to select time samples; see below); default = 0.1 ## @item maxits ## number of refinement iterations (default=10) ## @end table ## @strong{Outputs} ## @table @var ## @item tvals ## time values at which @var{p}(@var{t}) is computed ## @item plist ## list values of @var{p}(@var{t}); @var{plist} @{ @var{i} @} ## is @var{p}(@var{tvals}(@var{i})) ## @end table ## @var{tvals} is selected so that: ## @iftex ## @tex ## $$ \Vert plist_{i} - plist_{i-1} \Vert < ptol $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## || Plist@{i@} - Plist@{i-1@} || < Ptol ## @end example ## @end ifinfo ## for every @var{i} between 2 and length(@var{tvals}). ## @end deftypefn function [tvals, Plist] = dre (sys, Q, R, Qf, t0, tf, Ptol, maxits) if (nargin < 6 || nargin > 8) print_usage (); elseif (! isstruct (sys)) error ("sys must be a system data structure") elseif (is_digital (sys)) error ("sys must be a continuous time system") elseif (! ismatrix (Q) || ! ismatrix (R) || ! ismatrix (Qf)) error ("Q, R, and Qf must be matrices"); elseif (! isscalar (t0) || ! isscalar (tf)) error ("t0 and tf must be scalars") elseif (t0 >= tf) error ("t0=%e >= tf=%e", t0, tf); elseif (nargin < 7) Ptol = 0.1; elseif (! isscalar (Ptol)) error ("Ptol must be a scalar"); elseif (Ptol <= 0) error ("Ptol must be positive"); endif if (nargin < 8) maxits = 10; elseif (! isscalar (maxits)) error ("maxits must be a scalar"); elseif (maxits <= 0) error ("maxits must be positive"); endif maxits = ceil (maxits); [aa, bb] = sys2ss (sys); nn = sysdimensions (sys, "cst"); mm = sysdimensions (sys, "in"); pp = sysdimensions (sys, "out"); if (size (Q) != [nn, nn]) error ("Q(%dx%d); sys has %d states", rows (Q), columns (Q), nn); elseif (size (Qf) != [nn, nn]) error ("Qf(%dx%d); sys has %d states", rows (Qf), columns (Qf), nn); elseif (size (R) != [mm, mm]) error ("R(%dx%d); sys has %d inputs", rows (R), columns (R), mm); endif ## construct Hamiltonian matrix H = [aa , -(bb/R)*bb' ; -Q, -aa']; ## select time step to avoid numerical overflow fast_eig = max (abs (eig (H))); tc = log (10) / fast_eig; nst = ceil ((tf-t0)/tc); tvals = -linspace (-tf, -t0, nst); Plist = list (Qf); In = eye (nn); n1 = nn+1; n2 = nn+nn; done = 0; while (! done) done = 1; # assume this pass will do the job ## sort time values in reverse order tvals = -sort (-tvals); tvlen = length (tvals); maxerr = 0; ## compute new values of P(t); recompute old values just in case for ii = 2:tvlen uv_i_minus_1 = [In; Plist{ii-1}]; delta_t = tvals(ii-1) - tvals(ii); uv = expm (-H*delta_t)*uv_i_minus_1; Qi = uv(n1:n2,1:nn)/uv(1:nn,1:nn); Plist(ii) = (Qi+Qi')/2; ## check error Perr = norm (Plist{ii} - Plist{ii-1})/norm(Plist{ii}); maxerr = max (maxerr,Perr); if (Perr > Ptol) new_t = mean (tvals([ii,ii-1])); tvals = [tvals, new_t]; done = 0; endif endfor ## check number of iterations maxits = maxits - 1; done = done + (maxits == 0); endwhile if (maxerr > Ptol) warning ("dre: exiting with %d points, max rel chg. = %e, Ptol = %e", tvlen, maxerr, Ptol); tvals = tvals(1:length(Plist)); endif endfunction