Mercurial > hg > octave-nkf
view liboctave/ColVector.cc @ 238:780cbbc57b7c
[project @ 1993-11-30 20:23:04 by jwe]
author | jwe |
---|---|
date | Tue, 30 Nov 1993 20:23:04 +0000 |
parents | 3f7246605fe9 |
children | 1d3dbdfd0d19 |
line wrap: on
line source
// ColumnVector manipulations. -*- C++ -*- /* Copyright (C) 1992, 1993 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <iostream.h> #include "Matrix.h" #include "mx-inlines.cc" #include "f77-uscore.h" #include "lo-error.h" // Fortran functions we call. extern "C" { int F77_FCN (dgemm) (const char*, const char*, const int*, const int*, const int*, const double*, const double*, const int*, const double*, const int*, const double*, double*, const int*, long, long); /* * f2c translates complex*16 as * * typedef struct { doublereal re, im; } doublecomplex; * * and Complex.h from libg++ uses * * protected: * double re; * double im; * * as the only data members, so this should work (fingers crossed that * things don't change). */ int F77_FCN (zgemm) (const char*, const char*, const int*, const int*, const int*, const Complex*, const Complex*, const int*, const Complex*, const int*, const Complex*, Complex*, const int*, long, long); } /* * Column Vector class. */ #if 0 ColumnVector& ColumnVector::resize (int n) { if (n < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimension"); return *this; } double *new_data = (double *) NULL; if (n > 0) { new_data = new double [n]; int min_len = len < n ? len : n; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; } delete [] data; len = n; data = new_data; return *this; } ColumnVector& ColumnVector::resize (int n, double val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } #endif int ColumnVector::operator == (const ColumnVector& a) const { int len = length (); if (len != a.length ()) return 0; return equal (data (), a.data (), len); } int ColumnVector::operator != (const ColumnVector& a) const { return !(*this == a); } ColumnVector& ColumnVector::insert (const ColumnVector& a, int r) { int a_len = a.length (); if (r < 0 || r + a_len - 1 > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r+i) = a.elem (i); return *this; } ColumnVector& ColumnVector::fill (double val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ColumnVector& ColumnVector::fill (double val, int r1, int r2) { int len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } for (int i = r1; i <= r2; i++) elem (i) = val; return *this; } ColumnVector ColumnVector::stack (const ColumnVector& a) const { int len = length (); int nr_insert = len; ColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } RowVector ColumnVector::transpose (void) const { int len = length (); return RowVector (dup (data (), len), len); } // resize is the destructive equivalent for this one ColumnVector ColumnVector::extract (int r1, int r2) const { if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } int new_r = r2 - r1 + 1; ColumnVector result (new_r); for (int i = 0; i < new_r; i++) result.elem (i) = elem (r1+i); return result; } // column vector by column vector -> column vector operations ColumnVector& ColumnVector::operator += (const ColumnVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return ColumnVector (); } if (len == 0) return *this; double *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ColumnVector& ColumnVector::operator -= (const ColumnVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return ColumnVector (); } if (len == 0) return *this; double *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } // scalar by column vector -> column vector operations ComplexColumnVector operator + (const ColumnVector& a, const Complex& s) { int len = a.length (); return ComplexColumnVector (add (a.data (), len, s), len); } ComplexColumnVector operator - (const ColumnVector& a, const Complex& s) { int len = a.length (); return ComplexColumnVector (subtract (a.data (), len, s), len); } ComplexColumnVector operator * (const ColumnVector& a, const Complex& s) { int len = a.length (); return ComplexColumnVector (multiply (a.data (), len, s), len); } ComplexColumnVector operator / (const ColumnVector& a, const Complex& s) { int len = a.length (); return ComplexColumnVector (divide (a.data (), len, s), len); } // scalar by column vector -> column vector operations ComplexColumnVector operator + (const Complex& s, const ColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (add (a.data (), a_len, s), a_len); } ComplexColumnVector operator - (const Complex& s, const ColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (subtract (s, a.data (), a_len), a_len); } ComplexColumnVector operator * (const Complex& s, const ColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (multiply (a.data (), a_len, s), a_len); } ComplexColumnVector operator / (const Complex& s, const ColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (divide (s, a.data (), a_len), a_len); } // column vector by row vector -> matrix operations Matrix operator * (const ColumnVector& v, const RowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { (*current_liboctave_error_handler) ("nonconformant vector multiplication attempted"); return Matrix (); } if (len == 0) return Matrix (len, len, 0.0); char transa = 'N'; char transb = 'N'; double alpha = 1.0; double beta = 0.0; int anr = 1; double *c = new double [len * a_len]; F77_FCN (dgemm) (&transa, &transb, &len, &a_len, &anr, &alpha, v.data (), &len, a.data (), &anr, &beta, c, &len, 1L, 1L); return Matrix (c, len, a_len); } ComplexMatrix operator * (const ColumnVector& v, const ComplexRowVector& a) { ComplexColumnVector tmp (v); return tmp * a; } ComplexColumnVector operator + (const ColumnVector& v, const ComplexColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (add (v.data (), a.data (), len), len); } ComplexColumnVector operator - (const ColumnVector& v, const ComplexColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (subtract (v.data (), a.data (), len), len); } ComplexColumnVector product (const ColumnVector& v, const ComplexColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector product attempted"); return ColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (multiply (v.data (), a.data (), len), len); } ComplexColumnVector quotient (const ColumnVector& v, const ComplexColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector quotient attempted"); return ColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (divide (v.data (), a.data (), len), len); } // other operations ColumnVector map (d_d_Mapper f, const ColumnVector& a) { ColumnVector b (a); b.map (f); return b; } void ColumnVector::map (d_d_Mapper f) { for (int i = 0; i < length (); i++) elem (i) = f (elem (i)); } double ColumnVector::min (void) const { int len = length (); if (len == 0) return 0.0; double res = elem (0); for (int i = 1; i < len; i++) if (elem (i) < res) res = elem (i); return res; } double ColumnVector::max (void) const { int len = length (); if (len == 0) return 0.0; double res = elem (0); for (int i = 1; i < len; i++) if (elem (i) > res) res = elem (i); return res; } ostream& operator << (ostream& os, const ColumnVector& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.length (); i++) os << /* setw (field_width) << */ a.elem (i) << "\n"; return os; } /* * Complex Column Vector class */ ComplexColumnVector::ComplexColumnVector (const ColumnVector& a) : Array<Complex> (a.length ()) { for (int i = 0; i < length (); i++) elem (i) = a.elem (i); } #if 0 ComplexColumnVector& ComplexColumnVector::resize (int n) { if (n < 0) { (*current_liboctave_error_handler) ("can't resize to negative dimension"); return *this; } Complex *new_data = (Complex *) NULL; if (n > 0) { new_data = new Complex [n]; int min_len = len < n ? len : n; for (int i = 0; i < min_len; i++) new_data[i] = data[i]; } delete [] data; len = n; data = new_data; return *this; } ComplexColumnVector& ComplexColumnVector::resize (int n, double val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } ComplexColumnVector& ComplexColumnVector::resize (int n, const Complex& val) { int old_len = len; resize (n); for (int i = old_len; i < len; i++) data[i] = val; return *this; } #endif int ComplexColumnVector::operator == (const ComplexColumnVector& a) const { int len = length (); if (len != a.length ()) return 0; return equal (data (), a.data (), len); } int ComplexColumnVector::operator != (const ComplexColumnVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations ComplexColumnVector& ComplexColumnVector::insert (const ColumnVector& a, int r) { int a_len = a.length (); if (r < 0 || r + a_len - 1 > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r+i) = a.elem (i); return *this; } ComplexColumnVector& ComplexColumnVector::insert (const ComplexColumnVector& a, int r) { int a_len = a.length (); if (r < 0 || r + a_len - 1 > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } for (int i = 0; i < a_len; i++) elem (r+i) = a.elem (i); return *this; } ComplexColumnVector& ComplexColumnVector::fill (double val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ComplexColumnVector& ComplexColumnVector::fill (const Complex& val) { int len = length (); if (len > 0) for (int i = 0; i < len; i++) elem (i) = val; return *this; } ComplexColumnVector& ComplexColumnVector::fill (double val, int r1, int r2) { int len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } for (int i = r1; i <= r2; i++) elem (i) = val; return *this; } ComplexColumnVector& ComplexColumnVector::fill (const Complex& val, int r1, int r2) { int len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } for (int i = r1; i <= r2; i++) elem (i) = val; return *this; } ComplexColumnVector ComplexColumnVector::stack (const ColumnVector& a) const { int len = length (); int nr_insert = len; ComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } ComplexColumnVector ComplexColumnVector::stack (const ComplexColumnVector& a) const { int len = length (); int nr_insert = len; ComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } ComplexRowVector ComplexColumnVector::hermitian (void) const { int len = length (); return ComplexRowVector (conj_dup (data (), len), len); } ComplexRowVector ComplexColumnVector::transpose (void) const { int len = length (); return ComplexRowVector (dup (data (), len), len); } ColumnVector real (const ComplexColumnVector& a) { int a_len = a.length (); ColumnVector retval; if (a_len > 0) retval = ColumnVector (real_dup (a.data (), a_len), a_len); return retval; } ColumnVector imag (const ComplexColumnVector& a) { int a_len = a.length (); ColumnVector retval; if (a_len > 0) retval = ColumnVector (imag_dup (a.data (), a_len), a_len); return retval; } ComplexColumnVector conj (const ComplexColumnVector& a) { int a_len = a.length (); ComplexColumnVector retval; if (a_len > 0) retval = ComplexColumnVector (conj_dup (a.data (), a_len), a_len); return retval; } // resize is the destructive equivalent for this one ComplexColumnVector ComplexColumnVector::extract (int r1, int r2) const { if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; } int new_r = r2 - r1 + 1; ComplexColumnVector result (new_r); for (int i = 0; i < new_r; i++) result.elem (i) = elem (r1+i); return result; } // column vector by column vector -> column vector operations ComplexColumnVector& ComplexColumnVector::operator += (const ColumnVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ComplexColumnVector& ComplexColumnVector::operator -= (const ColumnVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } ComplexColumnVector& ComplexColumnVector::operator += (const ComplexColumnVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector += operation attempted"); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! add2 (d, a.data (), len); return *this; } ComplexColumnVector& ComplexColumnVector::operator -= (const ComplexColumnVector& a) { int len = length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector -= operation attempted"); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! subtract2 (d, a.data (), len); return *this; } // column vector by scalar -> column vector operations ComplexColumnVector operator + (const ComplexColumnVector& v, double s) { int len = v.length (); return ComplexColumnVector (add (v.data (), len, s), len); } ComplexColumnVector operator - (const ComplexColumnVector& v, double s) { int len = v.length (); return ComplexColumnVector (subtract (v.data (), len, s), len); } ComplexColumnVector operator * (const ComplexColumnVector& v, double s) { int len = v.length (); return ComplexColumnVector (multiply (v.data (), len, s), len); } ComplexColumnVector operator / (const ComplexColumnVector& v, double s) { int len = v.length (); return ComplexColumnVector (divide (v.data (), len, s), len); } // scalar by column vector -> column vector operations ComplexColumnVector operator + (double s, const ComplexColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (add (a.data (), a_len, s), a_len); } ComplexColumnVector operator - (double s, const ComplexColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (subtract (s, a.data (), a_len), a_len); } ComplexColumnVector operator * (double s, const ComplexColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (multiply (a.data (), a_len, s), a_len); } ComplexColumnVector operator / (double s, const ComplexColumnVector& a) { int a_len = a.length (); return ComplexColumnVector (divide (s, a.data (), a_len), a_len); } // column vector by row vector -> matrix operations ComplexMatrix operator * (const ComplexColumnVector& v, const ComplexRowVector& a) { int len = v.length (); int a_len = a.length (); if (len != a_len) { (*current_liboctave_error_handler) ("nonconformant vector multiplication attempted"); return ComplexMatrix (); } if (len == 0) return ComplexMatrix (len, len, 0.0); char transa = 'N'; char transb = 'N'; Complex alpha (1.0); Complex beta (0.0); int anr = 1; Complex *c = new Complex [len * a_len]; F77_FCN (zgemm) (&transa, &transb, &len, &a_len, &anr, &alpha, v.data (), &len, a.data (), &anr, &beta, c, &len, 1L, 1L); return ComplexMatrix (c, len, a_len); } // column vector by column vector -> column vector operations ComplexColumnVector operator + (const ComplexColumnVector& v, const ColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector addition attempted"); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (add (v.data (), a.data (), len), len); } ComplexColumnVector operator - (const ComplexColumnVector& v, const ColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector subtraction attempted"); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (subtract (v.data (), a.data (), len), len); } ComplexColumnVector product (const ComplexColumnVector& v, const ColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector product attempted"); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (multiply (v.data (), a.data (), len), len); } ComplexColumnVector quotient (const ComplexColumnVector& v, const ColumnVector& a) { int len = v.length (); if (len != a.length ()) { (*current_liboctave_error_handler) ("nonconformant vector quotient attempted"); return ComplexColumnVector (); } if (len == 0) return ComplexColumnVector (0); return ComplexColumnVector (divide (v.data (), a.data (), len), len); } // other operations ComplexColumnVector map (c_c_Mapper f, const ComplexColumnVector& a) { ComplexColumnVector b (a); b.map (f); return b; } ColumnVector map (d_c_Mapper f, const ComplexColumnVector& a) { int a_len = a.length (); ColumnVector b (a_len); for (int i = 0; i < a_len; i++) b.elem (i) = f (a.elem (i)); return b; } void ComplexColumnVector::map (c_c_Mapper f) { for (int i = 0; i < length (); i++) elem (i) = f (elem (i)); } Complex ComplexColumnVector::min (void) const { int len = length (); if (len == 0) return 0.0; Complex res = elem (0); double absres = abs (res); for (int i = 1; i < len; i++) if (abs (elem (i)) < absres) { res = elem (i); absres = abs (res); } return res; } Complex ComplexColumnVector::max (void) const { int len = length (); if (len == 0) return 0.0; Complex res = elem (0); double absres = abs (res); for (int i = 1; i < len; i++) if (abs (elem (i)) > absres) { res = elem (i); absres = abs (res); } return res; } // i/o ostream& operator << (ostream& os, const ComplexColumnVector& a) { // int field_width = os.precision () + 7; for (int i = 0; i < a.length (); i++) os << /* setw (field_width) << */ a.elem (i) << "\n"; return os; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */