Mercurial > hg > octave-nkf
view src/OPERATORS/op-cs-cs.cc @ 10454:79a56d0a6a0d ss-3-3-51
version is now 3.3.51
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Wed, 24 Mar 2010 16:27:05 -0400 |
parents | ac4b97c6bf8b |
children | fd0a3ac60b0e |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1998, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "Array-util.h" #include "gripes.h" #include "oct-obj.h" #include "ov.h" #include "ov-complex.h" #include "ov-cx-mat.h" #include "ov-flt-cx-mat.h" #include "ov-typeinfo.h" #include "ov-null-mat.h" #include "ops.h" #include "xdiv.h" #include "xpow.h" // unary complex scalar ops. DEFUNOP (not, complex) { CAST_UNOP_ARG (const octave_complex&); Complex x = v.complex_value (); if (xisnan (x)) gripe_nan_to_logical_conversion (); return octave_value (x == 0.0); } DEFUNOP_OP (uplus, complex, /* no-op */) DEFUNOP_OP (uminus, complex, -) DEFUNOP_OP (transpose, complex, /* no-op */) DEFUNOP (hermitian, complex) { CAST_UNOP_ARG (const octave_complex&); return octave_value (conj (v.complex_value ())); } DEFNCUNOP_METHOD (incr, complex, increment) DEFNCUNOP_METHOD (decr, complex, decrement) // complex scalar by complex scalar ops. DEFBINOP_OP (add, complex, complex, +) DEFBINOP_OP (sub, complex, complex, -) DEFBINOP_OP (mul, complex, complex, *) DEFBINOP (div, complex, complex) { CAST_BINOP_ARGS (const octave_complex&, const octave_complex&); Complex d = v2.complex_value (); if (d == 0.0) gripe_divide_by_zero (); return octave_value (v1.complex_value () / d); } DEFBINOP_FN (pow, complex, complex, xpow) DEFBINOP (ldiv, complex, complex) { CAST_BINOP_ARGS (const octave_complex&, const octave_complex&); Complex d = v1.complex_value (); if (d == 0.0) gripe_divide_by_zero (); return octave_value (v2.complex_value () / d); } DEFCMPLXCMPOP_OP (lt, complex, complex, <) DEFCMPLXCMPOP_OP (le, complex, complex, <=) DEFCMPLXCMPOP_OP (eq, complex, complex, ==) DEFCMPLXCMPOP_OP (ge, complex, complex, >=) DEFCMPLXCMPOP_OP (gt, complex, complex, >) DEFCMPLXCMPOP_OP (ne, complex, complex, !=) DEFBINOP_OP (el_mul, complex, complex, *) DEFBINOP (el_div, complex, complex) { CAST_BINOP_ARGS (const octave_complex&, const octave_complex&); Complex d = v2.complex_value (); if (d == 0.0) gripe_divide_by_zero (); return octave_value (v1.complex_value () / d); } DEFBINOP_FN (el_pow, complex, complex, xpow) DEFBINOP (el_ldiv, complex, complex) { CAST_BINOP_ARGS (const octave_complex&, const octave_complex&); Complex d = v1.complex_value (); if (d == 0.0) gripe_divide_by_zero (); return octave_value (v2.complex_value () / d); } DEFBINOP (el_and, complex, complex) { CAST_BINOP_ARGS (const octave_complex&, const octave_complex&); return v1.complex_value () != 0.0 && v2.complex_value () != 0.0; } DEFBINOP (el_or, complex, complex) { CAST_BINOP_ARGS (const octave_complex&, const octave_complex&); return v1.complex_value () != 0.0 || v2.complex_value () != 0.0; } DEFNDCATOP_FN (cs_cs, complex, complex, complex_array, complex_array, concat) CONVDECL (complex_to_float_complex) { CAST_CONV_ARG (const octave_complex&); return new octave_float_complex_matrix (FloatComplexMatrix (1, 1, static_cast<FloatComplex>(v.complex_value ()))); } void install_cs_cs_ops (void) { INSTALL_UNOP (op_not, octave_complex, not); INSTALL_UNOP (op_uplus, octave_complex, uplus); INSTALL_UNOP (op_uminus, octave_complex, uminus); INSTALL_UNOP (op_transpose, octave_complex, transpose); INSTALL_UNOP (op_hermitian, octave_complex, hermitian); INSTALL_NCUNOP (op_incr, octave_complex, incr); INSTALL_NCUNOP (op_decr, octave_complex, decr); INSTALL_BINOP (op_add, octave_complex, octave_complex, add); INSTALL_BINOP (op_sub, octave_complex, octave_complex, sub); INSTALL_BINOP (op_mul, octave_complex, octave_complex, mul); INSTALL_BINOP (op_div, octave_complex, octave_complex, div); INSTALL_BINOP (op_pow, octave_complex, octave_complex, pow); INSTALL_BINOP (op_ldiv, octave_complex, octave_complex, ldiv); INSTALL_BINOP (op_lt, octave_complex, octave_complex, lt); INSTALL_BINOP (op_le, octave_complex, octave_complex, le); INSTALL_BINOP (op_eq, octave_complex, octave_complex, eq); INSTALL_BINOP (op_ge, octave_complex, octave_complex, ge); INSTALL_BINOP (op_gt, octave_complex, octave_complex, gt); INSTALL_BINOP (op_ne, octave_complex, octave_complex, ne); INSTALL_BINOP (op_el_mul, octave_complex, octave_complex, el_mul); INSTALL_BINOP (op_el_div, octave_complex, octave_complex, el_div); INSTALL_BINOP (op_el_pow, octave_complex, octave_complex, el_pow); INSTALL_BINOP (op_el_ldiv, octave_complex, octave_complex, el_ldiv); INSTALL_BINOP (op_el_and, octave_complex, octave_complex, el_and); INSTALL_BINOP (op_el_or, octave_complex, octave_complex, el_or); INSTALL_CATOP (octave_complex, octave_complex, cs_cs); INSTALL_ASSIGNCONV (octave_complex, octave_complex, octave_complex_matrix); INSTALL_ASSIGNCONV (octave_complex, octave_null_matrix, octave_complex_matrix); INSTALL_ASSIGNCONV (octave_complex, octave_null_str, octave_complex_matrix); INSTALL_ASSIGNCONV (octave_complex, octave_null_sq_str, octave_complex_matrix); INSTALL_CONVOP (octave_complex, octave_float_complex_matrix, complex_to_float_complex); }