Mercurial > hg > octave-nkf
view scripts/polynomial/polyeig.m @ 20638:7ac907da9fba
Use error() rather than ::error() unless explicitly required.
* resource-manager.cc (instance_ok), shortcut-manager.cc (instance_ok),
daspk.cc (DASPK_ABORT, DASPK_ABORT2), dasrt.cc (DASRT_ABORT, DASRT_ABORT2),
dassl.cc (DASSL_ABORT, DASSL_ABORT2), debug.cc (instance_ok),
display.cc (instance_ok), dynamic-ld.cc (octave_shlib_list::instance_ok,
octave_dynamic_loader::instance_ok, do_load_oct, do_load_mex), file-io.cc
(fopen_mode_to_ios_mode, do_stream_open, Ffprintf, Fsprintf, Fscanf, Ffscanf,
get_sscanf_data, Fsscanf, do_fread, do_fwrite, Fpopen, Ftempname, convert,
Fumask), graphics.in.h (graphics_toolkit::instance_ok,
gh_manager::instance_ok), load-path.cc (instance_ok),
ls-oct-ascii.cc (save_three_d), lsode.cc (LSODE_ABORT, LSODE_ABORT2),
oct-errno.in.cc (instance_ok), octave-link.cc (connect_link),
pager.cc (octave_pager_stream::instance_ok, octave_diary_stream::instance_ok),
quad.cc (QUAD_ABORT, QUAD_ABORT2),
sighandlers.cc (w32_interrupt_manager::instance_ok,
octave_child_list::instance_ok), symtab.cc (do_update_nest),
symtab.h (instance_ok), syscalls.cc (convert), toplev.h (instance_ok),
txt-eng-ft.cc (instance_ok, set_mode), urlwrite.cc (instance_ok),
__init_fltk__.cc (instance_ok), ov-builtin.cc (do_multi_index_op),
ov-classdef.cc (class_fevalStatic, make_class, octave_classdef::subsasgn,
do_multi_index_op, cdef_object_array::subsref, cdef_object_array::subsasgn,
install_meth, meta_subsref, run_constructor, make_meta_class, get_value,
set_value, check_method), ov-classdef.h (meta_subsref, instance_ok),
ov-fcn-handle.cc (octave_fcn_handle), ov-mex-fcn.cc (do_multi_index_op),
ov-range.h (octave_range), ov-typeinfo.cc (instance_ok),
ov-usr-fcn.cc (subsref, do_multi_index_op), pt-arg-list.cc (Fend,
convert_to_const_vector), pt-cell.cc (rvalue1), pt-colon.cc (append, rvalue1),
pt-eval.cc (visit_simple_for_command, visit_switch_command),
pt-exp.cc (is_logically_true, rvalue), pt-id.cc (eval_undefined_error),
pt-id.h (workspace_error), pt-mat.cc (get_concat_class):
Use error() rather than ::error().
author | Rik <rik@octave.org> |
---|---|
date | Thu, 06 Aug 2015 08:09:01 -0700 |
parents | f1d0f506ee78 |
children |
line wrap: on
line source
## Copyright (C) 2012-2015 Fotios Kasolis ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{z} =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl}) ## @deftypefnx {Function File} {[@var{v}, @var{z}] =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl}) ## ## Solve the polynomial eigenvalue problem of degree @var{l}. ## ## Given an @var{n*n} matrix polynomial ## ## @code{@var{C}(s) = @var{C0} + @var{C1} s + @dots{} + @var{Cl} s^l} ## ## @code{polyeig} solves the eigenvalue problem ## ## @code{(@var{C0} + @var{C1} + @dots{} + @var{Cl})v = 0}. ## ## Note that the eigenvalues @var{z} are the zeros of the matrix polynomial. ## @var{z} is a row vector with @var{n*l} elements. @var{v} is a matrix ## (@var{n} x @var{n}*@var{l}) with columns that correspond to the ## eigenvectors. ## ## @seealso{eig, eigs, compan} ## @end deftypefn ## Author: Fotios Kasolis function [z, v] = polyeig (varargin) if (nargin < 1 || nargout > 2) print_usage (); endif nin = numel (varargin); n = rows (varargin{1}); for i = 1 : nin if (! issquare (varargin{i})) error ("polyeig: coefficients must be square matrices"); endif if (rows (varargin{i}) != n) error ("polyeig: coefficients must have the same dimensions"); endif endfor ## matrix polynomial degree l = nin - 1; ## form needed matrices C = [ zeros(n * (l - 1), n), eye(n * (l - 1)); -cell2mat(varargin(1:end-1)) ]; D = [ eye(n * (l - 1)), zeros(n * (l - 1), n); zeros(n, n * (l - 1)), varargin{end} ]; ## solve generalized eigenvalue problem if (nargout == 2) [z, v] = eig (C, D); v = diag (v); ## return n-element eigenvectors normalized so that the infinity-norm = 1 z = z(1:n,:); ## max() takes the abs if complex: t = max (z); z /= diag (t); else z = eig (C, D); endif endfunction %!shared C0, C1 %! C0 = [8, 0; 0, 4]; C1 = [1, 0; 0, 1]; %!test %! z = polyeig (C0, C1); %! assert (z, [-8; -4]); %!test %! [v,z] = polyeig (C0, C1); %! assert (z, [-8; -4]); %! z = diag (z); %! d = C0*v + C1*v*z; %! assert (norm (d), 0.0); ## Test input validation %!error polyeig () %!error [a,b,c] = polyeig (1) %!error <coefficients must be square matrices> polyeig (ones (3,2)) %!error <coefficients must have the same dimensions> polyeig (ones (3,3), ones (2,2))