Mercurial > hg > octave-nkf
view liboctave/dNDArray.cc @ 5403:7bdddf96f028
[project @ 2005-07-07 16:46:23 by jwe]
author | jwe |
---|---|
date | Thu, 07 Jul 2005 16:46:24 +0000 |
parents | 25c8956d2204 |
children | ace8d8d26933 |
line wrap: on
line source
// N-D Array manipulations. /* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <vector> #include "Array-util.h" #include "dNDArray.h" #include "mx-base.h" #include "f77-fcn.h" #include "lo-error.h" #include "lo-ieee.h" #include "lo-mappers.h" #if defined (HAVE_FFTW3) #include "oct-fftw.h" ComplexNDArray NDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const double *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::fft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } ComplexNDArray NDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); ComplexNDArray retval (*this); Complex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::ifft (out + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } ComplexNDArray NDArray::fourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return ComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const double *in = fortran_vec (); ComplexNDArray retval (dv); Complex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } ComplexNDArray NDArray::ifourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return ComplexNDArray (); dim_vector dv2(dv(0), dv(1)); ComplexNDArray retval (*this); Complex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::ifftNd (out + i*dist, out + i*dist, 2, dv2); return retval; } ComplexNDArray NDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const double *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); octave_fftw::fftNd (in, out, rank, dv); return retval; } ComplexNDArray NDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); ComplexNDArray tmp (*this); Complex *in (tmp.fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); octave_fftw::ifftNd (in, out, rank, dv); return retval; } #else extern "C" { // Note that the original complex fft routines were not written for // double complex arguments. They have been modified by adding an // implicit double precision (a-h,o-z) statement at the beginning of // each subroutine. F77_RET_T F77_FUNC (cffti, CFFTI) (const octave_idx_type&, Complex*); F77_RET_T F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, Complex*, Complex*); F77_RET_T F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, Complex*, Complex*); } ComplexNDArray NDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); ComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i]; } } return retval; } ComplexNDArray NDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); ComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i] / static_cast<double> (npts); } } return retval; } ComplexNDArray NDArray::fourier2d (void) const { dim_vector dv = dims(); dim_vector dv2 (dv(0), dv(1)); int rank = 2; ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (npts); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv2(i); } return retval; } ComplexNDArray NDArray::ifourier2d (void) const { dim_vector dv = dims(); dim_vector dv2 (dv(0), dv(1)); int rank = 2; ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (npts); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<double> (npts); } } stride *= dv2(i); } return retval; } ComplexNDArray NDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (npts); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv(i); } return retval; } ComplexNDArray NDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (npts); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<double> (npts); } } stride *= dv(i); } return retval; } #endif // unary operations boolNDArray NDArray::operator ! (void) const { boolNDArray b (dims ()); for (octave_idx_type i = 0; i < length (); i++) b.elem (i) = ! elem (i); return b; } bool NDArray::any_element_is_negative (bool neg_zero) const { octave_idx_type nel = nelem (); if (neg_zero) { for (octave_idx_type i = 0; i < nel; i++) if (lo_ieee_signbit (elem (i))) return true; } else { for (octave_idx_type i = 0; i < nel; i++) if (elem (i) < 0) return true; } return false; } bool NDArray::any_element_is_inf_or_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (xisinf (val) || xisnan (val)) return true; } return false; } bool NDArray::all_elements_are_int_or_inf_or_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (xisnan (val) || D_NINT (val) == val) continue; else return false; } return true; } // Return nonzero if any element of M is not an integer. Also extract // the largest and smallest values and return them in MAX_VAL and MIN_VAL. bool NDArray::all_integers (double& max_val, double& min_val) const { octave_idx_type nel = nelem (); if (nel > 0) { max_val = elem (0); min_val = elem (0); } else return false; for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (val > max_val) max_val = val; if (val < min_val) min_val = val; if (D_NINT (val) != val) return false; } return true; } bool NDArray::too_large_for_float (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { double val = elem (i); if (! (xisnan (val) || xisinf (val)) && fabs (val) > FLT_MAX) return true; } return false; } // XXX FIXME XXX -- this is not quite the right thing. boolNDArray NDArray::all (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (MX_ND_ALL_EXPR), true); } boolNDArray NDArray::any (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ANY_EVAL (elem (iter_idx) != 0 && ! lo_ieee_isnan (elem (iter_idx))), false); } NDArray NDArray::cumprod (int dim) const { MX_ND_CUMULATIVE_OP (NDArray, double, 1, *); } NDArray NDArray::cumsum (int dim) const { MX_ND_CUMULATIVE_OP (NDArray, double, 0, +); } NDArray NDArray::prod (int dim) const { MX_ND_REAL_OP_REDUCTION (*= elem (iter_idx), 1); } NDArray NDArray::sumsq (int dim) const { MX_ND_REAL_OP_REDUCTION (+= std::pow (elem (iter_idx), 2), 0); } NDArray NDArray::sum (int dim) const { MX_ND_REAL_OP_REDUCTION (+= elem (iter_idx), 0); } NDArray NDArray::max (int dim) const { ArrayN<octave_idx_type> dummy_idx; return max (dummy_idx, dim); } NDArray NDArray::max (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = dims (); dim_vector dr = dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return NDArray (); dr(dim) = 1; NDArray result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j; double tmp_max = octave_NaN; for (idx_j = 0; idx_j < x_len; idx_j++) { tmp_max = elem (idx_j * x_stride + x_offset); if (! xisnan (tmp_max)) break; } for (octave_idx_type j = idx_j+1; j < x_len; j++) { double tmp = elem (j * x_stride + x_offset); if (xisnan (tmp)) continue; else if (tmp > tmp_max) { idx_j = j; tmp_max = tmp; } } result.elem (i) = tmp_max; idx_arg.elem (i) = xisnan (tmp_max) ? 0 : idx_j; } return result; } NDArray NDArray::min (int dim) const { ArrayN<octave_idx_type> dummy_idx; return min (dummy_idx, dim); } NDArray NDArray::min (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = dims (); dim_vector dr = dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return NDArray (); dr(dim) = 1; NDArray result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j; double tmp_min = octave_NaN; for (idx_j = 0; idx_j < x_len; idx_j++) { tmp_min = elem (idx_j * x_stride + x_offset); if (! xisnan (tmp_min)) break; } for (octave_idx_type j = idx_j+1; j < x_len; j++) { double tmp = elem (j * x_stride + x_offset); if (xisnan (tmp)) continue; else if (tmp < tmp_min) { idx_j = j; tmp_min = tmp; } } result.elem (i) = tmp_min; idx_arg.elem (i) = xisnan (tmp_min) ? 0 : idx_j; } return result; } NDArray NDArray::concat (const NDArray& rb, const Array<octave_idx_type>& ra_idx) { if (rb.numel () > 0) insert (rb, ra_idx); return *this; } ComplexNDArray NDArray::concat (const ComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { ComplexNDArray retval (*this); if (rb.numel () > 0) retval.insert (rb, ra_idx); return retval; } charNDArray NDArray::concat (const charNDArray& rb, const Array<octave_idx_type>& ra_idx) { charNDArray retval (dims ()); octave_idx_type nel = numel (); for (octave_idx_type i = 0; i < nel; i++) { double d = elem (i); if (xisnan (d)) { (*current_liboctave_error_handler) ("invalid conversion from NaN to character"); return retval; } else { octave_idx_type ival = NINTbig (d); if (ival < 0 || ival > UCHAR_MAX) // XXX FIXME XXX -- is there something // better we could do? Should we warn the user? ival = 0; retval.elem (i) = static_cast<char>(ival); } } if (rb.numel () == 0) return retval; retval.insert (rb, ra_idx); return retval; } NDArray real (const ComplexNDArray& a) { octave_idx_type a_len = a.length (); NDArray retval; if (a_len > 0) retval = NDArray (mx_inline_real_dup (a.data (), a_len), a.dims ()); return retval; } NDArray imag (const ComplexNDArray& a) { octave_idx_type a_len = a.length (); NDArray retval; if (a_len > 0) retval = NDArray (mx_inline_imag_dup (a.data (), a_len), a.dims ()); return retval; } NDArray& NDArray::insert (const NDArray& a, octave_idx_type r, octave_idx_type c) { Array<double>::insert (a, r, c); return *this; } NDArray& NDArray::insert (const NDArray& a, const Array<octave_idx_type>& ra_idx) { Array<double>::insert (a, ra_idx); return *this; } NDArray NDArray::abs (void) const { NDArray retval (dims ()); octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) retval(i) = fabs (elem (i)); return retval; } Matrix NDArray::matrix_value (void) const { Matrix retval; int nd = ndims (); switch (nd) { case 1: retval = Matrix (Array2<double> (*this, dimensions(0), 1)); break; case 2: retval = Matrix (Array2<double> (*this, dimensions(0), dimensions(1))); break; default: (*current_liboctave_error_handler) ("invalid conversion of NDArray to Matrix"); break; } return retval; } void NDArray::increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ::increment_index (ra_idx, dimensions, start_dimension); } octave_idx_type NDArray::compute_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { return ::compute_index (ra_idx, dimensions); } // This contains no information on the array structure !!! std::ostream& operator << (std::ostream& os, const NDArray& a) { octave_idx_type nel = a.nelem (); for (octave_idx_type i = 0; i < nel; i++) { os << " "; octave_write_double (os, a.elem (i)); os << "\n"; } return os; } std::istream& operator >> (std::istream& is, NDArray& a) { octave_idx_type nel = a.nelem (); if (nel < 1 ) is.clear (std::ios::badbit); else { double tmp; for (octave_idx_type i = 0; i < nel; i++) { tmp = octave_read_double (is); if (is) a.elem (i) = tmp; else goto done; } } done: return is; } // XXX FIXME XXX -- it would be nice to share code among the min/max // functions below. #define EMPTY_RETURN_CHECK(T) \ if (nel == 0) \ return T (dv); NDArray min (double d, const NDArray& m) { dim_vector dv = m.dims (); octave_idx_type nel = dv.numel (); EMPTY_RETURN_CHECK (NDArray); NDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (d, m (i)); } return result; } NDArray min (const NDArray& m, double d) { dim_vector dv = m.dims (); octave_idx_type nel = dv.numel (); EMPTY_RETURN_CHECK (NDArray); NDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (d, m (i)); } return result; } NDArray min (const NDArray& a, const NDArray& b) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); if (dv != b.dims ()) { (*current_liboctave_error_handler) ("two-arg min expecting args of same size"); return NDArray (); } EMPTY_RETURN_CHECK (NDArray); NDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (a (i), b (i)); } return result; } NDArray max (double d, const NDArray& m) { dim_vector dv = m.dims (); octave_idx_type nel = dv.numel (); EMPTY_RETURN_CHECK (NDArray); NDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (d, m (i)); } return result; } NDArray max (const NDArray& m, double d) { dim_vector dv = m.dims (); octave_idx_type nel = dv.numel (); EMPTY_RETURN_CHECK (NDArray); NDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (d, m (i)); } return result; } NDArray max (const NDArray& a, const NDArray& b) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); if (dv != b.dims ()) { (*current_liboctave_error_handler) ("two-arg max expecting args of same size"); return NDArray (); } EMPTY_RETURN_CHECK (NDArray); NDArray result (dv); for (octave_idx_type i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (a (i), b (i)); } return result; } NDS_CMP_OPS(NDArray, , double, ) NDS_BOOL_OPS(NDArray, double, 0.0) SND_CMP_OPS(double, , NDArray, ) SND_BOOL_OPS(double, NDArray, 0.0) NDND_CMP_OPS(NDArray, , NDArray, ) NDND_BOOL_OPS(NDArray, NDArray, 0.0) /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */