Mercurial > hg > octave-nkf
view src/DLD-FUNCTIONS/amd.cc @ 13294:7dce7e110511
make concatenation of class objects work
* data.h: New file.
* src/Makefile.am (octinclude_HEADERS): Add it to the list.
* data.cc (attempt_type_conversion): New static function.
(do_class_concat): New function.
(do_cat): Use it if any elements of the list are objects.
Check whether any elements of the list are objects or cells.
Check whether all elements of the list are complex.
Check whether the first element of the list is a struct.
Maybe convert elements of the list to cells.
New tests for horzcat and vertcat.
* data.h (do_class_concat): Provide decl.
* ov-class.h (octave_class::octave_class): Allow optional parent
list.
* ov.h, ov.h (octave_value::octave_value (const Octave_map&,
const std::string&)): Likewise.
* pt-mat.cc (do_class_concat): New static function.
(tree_matrix::rvalue1): Use it to concatenate objects.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 07 Oct 2011 22:16:07 -0400 |
parents | 12df7854fa7c |
children | b0cdd60db5e5 |
line wrap: on
line source
/* Copyright (C) 2008-2011 David Bateman This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // This is the octave interface to amd, which bore the copyright given // in the help of the functions. #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cstdlib> #include <string> #include <vector> #include "ov.h" #include "defun-dld.h" #include "pager.h" #include "ov-re-mat.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "oct-map.h" #include "oct-sparse.h" #include "oct-locbuf.h" #ifdef IDX_TYPE_LONG #define AMD_NAME(name) amd_l ## name #else #define AMD_NAME(name) amd ## name #endif DEFUN_DLD (amd, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{p} =} amd (@var{S})\n\ @deftypefnx {Loadable Function} {@var{p} =} amd (@var{S}, @var{opts})\n\ \n\ Returns the approximate minimum degree permutation of a matrix. This\n\ permutation such that the Cholesky@tie{}factorization of @code{@var{S}\n\ (@var{p}, @var{p})} tends to be sparser than the Cholesky@tie{}factorization\n\ of @var{S} itself. @code{amd} is typically faster than @code{symamd} but\n\ serves a similar purpose.\n\ \n\ The optional parameter @var{opts} is a structure that controls the\n\ behavior of @code{amd}. The fields of the structure are\n\ \n\ @table @asis\n\ @item @var{opts}.dense\n\ Determines what @code{amd} considers to be a dense row or column of the\n\ input matrix. Rows or columns with more than @code{max(16, (dense *\n\ sqrt (@var{n})} entries, where @var{n} is the order of the matrix @var{S},\n\ are ignored by @code{amd} during the calculation of the permutation\n\ The value of dense must be a positive scalar and its default value is 10.0\n\ \n\ @item @var{opts}.aggressive\n\ If this value is a non zero scalar, then @code{amd} performs aggressive\n\ absorption. The default is not to perform aggressive absorption.\n\ @end table\n\ \n\ The author of the code itself is Timothy A. Davis\n\ @email{davis@@cise.ufl.edu}, University of Florida (see\n\ @url{http://www.cise.ufl.edu/research/sparse/amd}).\n\ @seealso{symamd, colamd}\n\ @end deftypefn") { octave_value_list retval; #ifdef HAVE_AMD int nargin = args.length (); if (nargin < 1 || nargin > 2) print_usage (); else { octave_idx_type n_row, n_col; const octave_idx_type *ridx, *cidx; SparseMatrix sm; SparseComplexMatrix scm; if (args(0).is_sparse_type ()) { if (args(0).is_complex_type ()) { scm = args(0).sparse_complex_matrix_value (); n_row = scm.rows (); n_col = scm.cols (); ridx = scm.xridx (); cidx = scm.xcidx (); } else { sm = args(0).sparse_matrix_value (); n_row = sm.rows (); n_col = sm.cols (); ridx = sm.xridx (); cidx = sm.xcidx (); } } else { if (args(0).is_complex_type ()) sm = SparseMatrix (real (args(0).complex_matrix_value ())); else sm = SparseMatrix (args(0).matrix_value ()); n_row = sm.rows (); n_col = sm.cols (); ridx = sm.xridx (); cidx = sm.xcidx (); } if (!error_state && n_row != n_col) error ("amd: matrix S must be square"); if (!error_state) { OCTAVE_LOCAL_BUFFER (double, Control, AMD_CONTROL); AMD_NAME (_defaults) (Control) ; if (nargin > 1) { octave_scalar_map arg1 = args(1).scalar_map_value (); if (!error_state) { octave_value tmp; tmp = arg1.getfield ("dense"); if (tmp.is_defined ()) Control[AMD_DENSE] = tmp.double_value (); tmp = arg1.getfield ("aggressive"); if (tmp.is_defined ()) Control[AMD_AGGRESSIVE] = tmp.double_value (); } else error ("amd: OPTS argument must be a scalar structure"); } if (!error_state) { OCTAVE_LOCAL_BUFFER (octave_idx_type, P, n_col); Matrix xinfo (AMD_INFO, 1); double *Info = xinfo.fortran_vec (); // FIXME -- how can we manage the memory allocation of // amd in a cleaner manner? amd_malloc = malloc; amd_free = free; amd_calloc = calloc; amd_realloc = realloc; amd_printf = printf; octave_idx_type result = AMD_NAME (_order) (n_col, cidx, ridx, P, Control, Info); switch (result) { case AMD_OUT_OF_MEMORY: error ("amd: out of memory"); break; case AMD_INVALID: error ("amd: matrix S is corrupted"); break; default: { if (nargout > 1) retval(1) = xinfo; Matrix Pout (1, n_col); for (octave_idx_type i = 0; i < n_col; i++) Pout.xelem (i) = P[i] + 1; retval (0) = Pout; } } } } } #else error ("amd: not available in this version of Octave"); #endif return retval; }