view src/DLD-FUNCTIONS/det.cc @ 13294:7dce7e110511

make concatenation of class objects work * data.h: New file. * src/Makefile.am (octinclude_HEADERS): Add it to the list. * data.cc (attempt_type_conversion): New static function. (do_class_concat): New function. (do_cat): Use it if any elements of the list are objects. Check whether any elements of the list are objects or cells. Check whether all elements of the list are complex. Check whether the first element of the list is a struct. Maybe convert elements of the list to cells. New tests for horzcat and vertcat. * data.h (do_class_concat): Provide decl. * ov-class.h (octave_class::octave_class): Allow optional parent list. * ov.h, ov.h (octave_value::octave_value (const Octave_map&, const std::string&)): Likewise. * pt-mat.cc (do_class_concat): New static function. (tree_matrix::rvalue1): Use it to concatenate objects.
author John W. Eaton <jwe@octave.org>
date Fri, 07 Oct 2011 22:16:07 -0400
parents 12df7854fa7c
children 5fa482628bf6
line wrap: on
line source

/*

Copyright (C) 1996-2011 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "DET.h"

#include "defun-dld.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"
#include "ops.h"

#include "ov-re-mat.h"
#include "ov-cx-mat.h"
#include "ov-flt-re-mat.h"
#include "ov-flt-cx-mat.h"
#include "ov-re-diag.h"
#include "ov-cx-diag.h"
#include "ov-flt-re-diag.h"
#include "ov-flt-cx-diag.h"
#include "ov-perm.h"

#define MAYBE_CAST(VAR, CLASS) \
  const CLASS *VAR = arg.type_id () == CLASS::static_type_id () ? \
   dynamic_cast<const CLASS *> (&arg.get_rep ()) : 0

DEFUN_DLD (det, args, nargout,
  "-*- texinfo -*-\n\
@deftypefn  {Loadable Function} {} det (@var{A})\n\
@deftypefnx {Loadable Function} {[@var{d}, @var{rcond}] =} det (@var{A})\n\
Compute the determinant of @var{A}.\n\
\n\
Return an estimate of the reciprocal condition number if requested.\n\
\n\
Routines from @sc{lapack} are used for full matrices and code from\n\
@sc{umfpack} is used for sparse matrices.\n\
\n\
The determinant should not be used to check a matrix for singularity.\n\
For that, use any of the condition number functions: @code{cond},\n\
@code{condest}, @code{rcond}.\n\
@seealso{cond, condest, rcond}\n\
@end deftypefn")
{
  octave_value_list retval;

  int nargin = args.length ();

  if (nargin != 1)
    {
      print_usage ();
      return retval;
    }

  octave_value arg = args(0);

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  if (nr == 0 && nc == 0)
    {
      retval(0) = 1.0;
      return retval;
    }

  int arg_is_empty = empty_arg ("det", nr, nc);
  if (arg_is_empty < 0)
    return retval;
  if (arg_is_empty > 0)
    return octave_value (Matrix (1, 1, 1.0));


  if (nr != nc)
    {
      gripe_square_matrix_required ("det");
      return retval;
    }

  bool isfloat = arg.is_single_type ();

  if (arg.is_diag_matrix ())
    {
      if (arg.is_complex_type ())
        {
          if (isfloat)
            {
              retval(0) = arg.float_complex_diag_matrix_value ().determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.float_complex_diag_matrix_value ().rcond ();
            }
          else
            {
              retval(0) = arg.complex_diag_matrix_value ().determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.complex_diag_matrix_value ().rcond ();
            }
        }
      else
        {
          if (isfloat)
            {
              retval(0) = arg.float_diag_matrix_value ().determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.float_diag_matrix_value ().rcond ();
            }
          else
            {
              retval(0) = arg.diag_matrix_value ().determinant ().value ();
              if (nargout > 1)
                retval(1) = arg.diag_matrix_value ().rcond ();
            }
        }
    }
  else if (arg.is_perm_matrix ())
    {
      retval(0) = static_cast<double> (arg.perm_matrix_value ().determinant ());
      if (nargout > 1)
        retval(1) = 1.0;
    }
  else if (arg.is_single_type ())
    {
      if (arg.is_real_type ())
        {
          octave_idx_type info;
          float rcond = 0.0;
          // Always compute rcond, so we can detect numerically
          // singular matrices.
          FloatMatrix m = arg.float_matrix_value ();
          if (! error_state)
            {
              MAYBE_CAST (rep, octave_float_matrix);
              MatrixType mtype = rep ? rep -> matrix_type () : MatrixType ();
              FloatDET det = m.determinant (mtype, info, rcond);
              retval(1) = rcond;
              retval(0) = info == -1 ? static_cast<float>(0.0) : det.value ();
              if (rep) rep->matrix_type (mtype);
            }
        }
      else if (arg.is_complex_type ())
        {
          octave_idx_type info;
          float rcond = 0.0;
          // Always compute rcond, so we can detect numerically
          // singular matrices.
          FloatComplexMatrix m = arg.float_complex_matrix_value ();
          if (! error_state)
            {
              MAYBE_CAST (rep, octave_float_complex_matrix);
              MatrixType mtype = rep ? rep -> matrix_type () : MatrixType ();
              FloatComplexDET det = m.determinant (mtype, info, rcond);
              retval(1) = rcond;
              retval(0) = info == -1 ? FloatComplex (0.0) : det.value ();
              if (rep) rep->matrix_type (mtype);
            }
        }
    }
  else
    {
      if (arg.is_real_type ())
        {
          octave_idx_type info;
          double rcond = 0.0;
          // Always compute rcond, so we can detect numerically
          // singular matrices.
          if (arg.is_sparse_type ())
            {
              SparseMatrix m = arg.sparse_matrix_value ();
              if (! error_state)
                {
                  DET det = m.determinant (info, rcond);
                  retval(1) = rcond;
                  retval(0) = info == -1 ? 0.0 : det.value ();
                }
            }
          else
            {
              Matrix m = arg.matrix_value ();
              if (! error_state)
                {
                  MAYBE_CAST (rep, octave_matrix);
                  MatrixType mtype = rep ? rep -> matrix_type () : MatrixType ();
                  DET det = m.determinant (mtype, info, rcond);
                  retval(1) = rcond;
                  retval(0) = info == -1 ? 0.0 : det.value ();
                  if (rep) rep->matrix_type (mtype);
                }
            }
        }
      else if (arg.is_complex_type ())
        {
          octave_idx_type info;
          double rcond = 0.0;
          // Always compute rcond, so we can detect numerically
          // singular matrices.
          if (arg.is_sparse_type ())
            {
              SparseComplexMatrix m = arg.sparse_complex_matrix_value ();
              if (! error_state)
                {
                  ComplexDET det = m.determinant (info, rcond);
                  retval(1) = rcond;
                  retval(0) = info == -1 ? Complex (0.0) : det.value ();
                }
            }
          else
            {
              ComplexMatrix m = arg.complex_matrix_value ();
              if (! error_state)
                {
                  MAYBE_CAST (rep, octave_complex_matrix);
                  MatrixType mtype = rep ? rep -> matrix_type () : MatrixType ();
                  ComplexDET det = m.determinant (mtype, info, rcond);
                  retval(1) = rcond;
                  retval(0) = info == -1 ? Complex (0.0) : det.value ();
                  if (rep) rep->matrix_type (mtype);
                }
            }
        }
      else
        gripe_wrong_type_arg ("det", arg);
    }
  return retval;
}

/*

%!assert(det ([1, 2; 3, 4]), -2, 10 * eps);
%!assert(det (single([1, 2; 3, 4])), single(-2), 10 * eps ('single'));
%!error <Invalid call to det.*> det ();
%!error <Invalid call to det.*> det (1, 2);
%!error det ([1, 2; 3, 4; 5, 6]);

*/