Mercurial > hg > octave-nkf
view src/DLD-FUNCTIONS/hess.cc @ 13294:7dce7e110511
make concatenation of class objects work
* data.h: New file.
* src/Makefile.am (octinclude_HEADERS): Add it to the list.
* data.cc (attempt_type_conversion): New static function.
(do_class_concat): New function.
(do_cat): Use it if any elements of the list are objects.
Check whether any elements of the list are objects or cells.
Check whether all elements of the list are complex.
Check whether the first element of the list is a struct.
Maybe convert elements of the list to cells.
New tests for horzcat and vertcat.
* data.h (do_class_concat): Provide decl.
* ov-class.h (octave_class::octave_class): Allow optional parent
list.
* ov.h, ov.h (octave_value::octave_value (const Octave_map&,
const std::string&)): Likewise.
* pt-mat.cc (do_class_concat): New static function.
(tree_matrix::rvalue1): Use it to concatenate objects.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 07 Oct 2011 22:16:07 -0400 |
parents | 7ef7e20057fa |
children | 5fa482628bf6 |
line wrap: on
line source
/* Copyright (C) 1996-2011 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "CmplxHESS.h" #include "dbleHESS.h" #include "fCmplxHESS.h" #include "floatHESS.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (hess, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{H} =} hess (@var{A})\n\ @deftypefnx {Loadable Function} {[@var{P}, @var{H}] =} hess (@var{A})\n\ @cindex Hessenberg decomposition\n\ Compute the Hessenberg decomposition of the matrix @var{A}.\n\ \n\ The Hessenberg decomposition is\n\ @tex\n\ $$\n\ A = PHP^T\n\ $$\n\ where $P$ is a square unitary matrix ($P^TP = I$), and $H$\n\ is upper Hessenberg ($H_{i,j} = 0, \\forall i \\ge j+1$).\n\ @end tex\n\ @ifnottex\n\ @code{@var{P} * @var{H} * @var{P}' = @var{A}} where @var{P} is a square\n\ unitary matrix (@code{@var{P}' * @var{P} = I}, using complex-conjugate\n\ transposition) and @var{H} is upper Hessenberg\n\ (@code{@var{H}(i, j) = 0 forall i >= j+1)}.\n\ @end ifnottex\n\ \n\ The Hessenberg decomposition is usually used as the first step in an\n\ eigenvalue computation, but has other applications as well (see Golub,\n\ Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979).\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 1 || nargout > 2) { print_usage (); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); int arg_is_empty = empty_arg ("hess", nr, nc); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value_list (2, Matrix ()); if (nr != nc) { gripe_square_matrix_required ("hess"); return retval; } if (arg.is_single_type ()) { if (arg.is_real_type ()) { FloatMatrix tmp = arg.float_matrix_value (); if (! error_state) { FloatHESS result (tmp); if (nargout <= 1) retval(0) = result.hess_matrix (); else { retval(1) = result.hess_matrix (); retval(0) = result.unitary_hess_matrix (); } } } else if (arg.is_complex_type ()) { FloatComplexMatrix ctmp = arg.float_complex_matrix_value (); if (! error_state) { FloatComplexHESS result (ctmp); if (nargout <= 1) retval(0) = result.hess_matrix (); else { retval(1) = result.hess_matrix (); retval(0) = result.unitary_hess_matrix (); } } } } else { if (arg.is_real_type ()) { Matrix tmp = arg.matrix_value (); if (! error_state) { HESS result (tmp); if (nargout <= 1) retval(0) = result.hess_matrix (); else { retval(1) = result.hess_matrix (); retval(0) = result.unitary_hess_matrix (); } } } else if (arg.is_complex_type ()) { ComplexMatrix ctmp = arg.complex_matrix_value (); if (! error_state) { ComplexHESS result (ctmp); if (nargout <= 1) retval(0) = result.hess_matrix (); else { retval(1) = result.hess_matrix (); retval(0) = result.unitary_hess_matrix (); } } } else { gripe_wrong_type_arg ("hess", arg); } } return retval; } /* %!test %! a = [1, 2, 3; 5, 4, 6; 8, 7, 9]; %! [p, h] = hess (a); %! assert(p * h * p', a, sqrt(eps)); %!test %! a = single([1, 2, 3; 5, 4, 6; 8, 7, 9]); %! [p, h] = hess (a); %! assert(p * h * p', a, sqrt(eps ('single'))); %!error <Invalid call to hess.*> hess (); %!error <Invalid call to hess.*> hess ([1, 2; 3, 4], 2); %!error hess ([1, 2; 3, 4; 5, 6]); */