Mercurial > hg > octave-nkf
view src/DLD-FUNCTIONS/svd.cc @ 13294:7dce7e110511
make concatenation of class objects work
* data.h: New file.
* src/Makefile.am (octinclude_HEADERS): Add it to the list.
* data.cc (attempt_type_conversion): New static function.
(do_class_concat): New function.
(do_cat): Use it if any elements of the list are objects.
Check whether any elements of the list are objects or cells.
Check whether all elements of the list are complex.
Check whether the first element of the list is a struct.
Maybe convert elements of the list to cells.
New tests for horzcat and vertcat.
* data.h (do_class_concat): Provide decl.
* ov-class.h (octave_class::octave_class): Allow optional parent
list.
* ov.h, ov.h (octave_value::octave_value (const Octave_map&,
const std::string&)): Likewise.
* pt-mat.cc (do_class_concat): New static function.
(tree_matrix::rvalue1): Use it to concatenate objects.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 07 Oct 2011 22:16:07 -0400 |
parents | 7ef7e20057fa |
children | 5fa482628bf6 |
line wrap: on
line source
/* Copyright (C) 1996-2011 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "CmplxSVD.h" #include "dbleSVD.h" #include "fCmplxSVD.h" #include "floatSVD.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "pr-output.h" #include "utils.h" #include "variables.h" static int Vsvd_driver = SVD::GESVD; DEFUN_DLD (svd, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{s} =} svd (@var{A})\n\ @deftypefnx {Loadable Function} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A})\n\ @deftypefnx {Loadable Function} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A}, @var{econ})\n\ @cindex singular value decomposition\n\ Compute the singular value decomposition of @var{A}\n\ @tex\n\ $$\n\ A = U S V^{\\dagger}\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ A = U*S*V'\n\ @end example\n\ \n\ @end ifnottex\n\ \n\ The function @code{svd} normally returns only the vector of singular values.\n\ When called with three return values, it computes\n\ @tex\n\ $U$, $S$, and $V$.\n\ @end tex\n\ @ifnottex\n\ @var{U}, @var{S}, and @var{V}.\n\ @end ifnottex\n\ For example,\n\ \n\ @example\n\ svd (hilb (3))\n\ @end example\n\ \n\ @noindent\n\ returns\n\ \n\ @example\n\ @group\n\ ans =\n\ \n\ 1.4083189\n\ 0.1223271\n\ 0.0026873\n\ @end group\n\ @end example\n\ \n\ @noindent\n\ and\n\ \n\ @example\n\ [u, s, v] = svd (hilb (3))\n\ @end example\n\ \n\ @noindent\n\ returns\n\ \n\ @example\n\ @group\n\ u =\n\ \n\ -0.82704 0.54745 0.12766\n\ -0.45986 -0.52829 -0.71375\n\ -0.32330 -0.64901 0.68867\n\ \n\ s =\n\ \n\ 1.40832 0.00000 0.00000\n\ 0.00000 0.12233 0.00000\n\ 0.00000 0.00000 0.00269\n\ \n\ v =\n\ \n\ -0.82704 0.54745 0.12766\n\ -0.45986 -0.52829 -0.71375\n\ -0.32330 -0.64901 0.68867\n\ @end group\n\ @end example\n\ \n\ If given a second argument, @code{svd} returns an economy-sized\n\ decomposition, eliminating the unnecessary rows or columns of @var{U} or\n\ @var{V}.\n\ @seealso{svd_driver, svds, eig}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin < 1 || nargin > 2 || nargout == 2 || nargout > 3) { print_usage (); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); if (arg.ndims () != 2) { error ("svd: A must be a 2-D matrix"); return retval; } bool isfloat = arg.is_single_type (); SVD::type type = ((nargout == 0 || nargout == 1) ? SVD::sigma_only : (nargin == 2) ? SVD::economy : SVD::std); SVD::driver driver = static_cast<SVD::driver> (Vsvd_driver); if (nr == 0 || nc == 0) { if (isfloat) { switch (type) { case SVD::std: retval(2) = FloatDiagMatrix (nc, nc, 1.0f); retval(1) = FloatMatrix (nr, nc); retval(0) = FloatDiagMatrix (nr, nr, 1.0f); break; case SVD::economy: retval(2) = FloatDiagMatrix (0, nc, 1.0f); retval(1) = FloatMatrix (0, 0); retval(0) = FloatDiagMatrix (nr, 0, 1.0f); break; case SVD::sigma_only: default: retval(0) = FloatMatrix (0, 1); break; } } else { switch (type) { case SVD::std: retval(2) = DiagMatrix (nc, nc, 1.0); retval(1) = Matrix (nr, nc); retval(0) = DiagMatrix (nr, nr, 1.0); break; case SVD::economy: retval(2) = DiagMatrix (0, nc, 1.0); retval(1) = Matrix (0, 0); retval(0) = DiagMatrix (nr, 0, 1.0); break; case SVD::sigma_only: default: retval(0) = Matrix (0, 1); break; } } } else { if (isfloat) { if (arg.is_real_type ()) { FloatMatrix tmp = arg.float_matrix_value (); if (! error_state) { if (tmp.any_element_is_inf_or_nan ()) { error ("svd: cannot take SVD of matrix containing Inf or NaN values"); return retval; } FloatSVD result (tmp, type, driver); FloatDiagMatrix sigma = result.singular_values (); if (nargout == 0 || nargout == 1) { retval(0) = sigma.diag (); } else { retval(2) = result.right_singular_matrix (); retval(1) = sigma; retval(0) = result.left_singular_matrix (); } } } else if (arg.is_complex_type ()) { FloatComplexMatrix ctmp = arg.float_complex_matrix_value (); if (! error_state) { if (ctmp.any_element_is_inf_or_nan ()) { error ("svd: cannot take SVD of matrix containing Inf or NaN values"); return retval; } FloatComplexSVD result (ctmp, type, driver); FloatDiagMatrix sigma = result.singular_values (); if (nargout == 0 || nargout == 1) { retval(0) = sigma.diag (); } else { retval(2) = result.right_singular_matrix (); retval(1) = sigma; retval(0) = result.left_singular_matrix (); } } } } else { if (arg.is_real_type ()) { Matrix tmp = arg.matrix_value (); if (! error_state) { if (tmp.any_element_is_inf_or_nan ()) { error ("svd: cannot take SVD of matrix containing Inf or NaN values"); return retval; } SVD result (tmp, type, driver); DiagMatrix sigma = result.singular_values (); if (nargout == 0 || nargout == 1) { retval(0) = sigma.diag (); } else { retval(2) = result.right_singular_matrix (); retval(1) = sigma; retval(0) = result.left_singular_matrix (); } } } else if (arg.is_complex_type ()) { ComplexMatrix ctmp = arg.complex_matrix_value (); if (! error_state) { if (ctmp.any_element_is_inf_or_nan ()) { error ("svd: cannot take SVD of matrix containing Inf or NaN values"); return retval; } ComplexSVD result (ctmp, type, driver); DiagMatrix sigma = result.singular_values (); if (nargout == 0 || nargout == 1) { retval(0) = sigma.diag (); } else { retval(2) = result.right_singular_matrix (); retval(1) = sigma; retval(0) = result.left_singular_matrix (); } } } else { gripe_wrong_type_arg ("svd", arg); return retval; } } } return retval; } /* %!assert(svd ([1, 2; 2, 1]), [3; 1], sqrt (eps)); %!test %! [u, s, v] = svd ([1, 2; 2, 1]); %! x = 1 / sqrt (2); %! assert (u, [-x, -x; -x, x], sqrt (eps)); %! assert (s, [3, 0; 0, 1], sqrt (eps)); %! assert (v, [-x, x; -x, -x], sqrt (eps)); %!test %! a = [1, 2, 3; 4, 5, 6]; %! [u, s, v] = svd (a); %! assert (u * s * v', a, sqrt (eps)); %!test %! a = [1, 2; 3, 4; 5, 6]; %! [u, s, v] = svd (a); %! assert (u * s * v', a, sqrt (eps)); %!test %! a = [1, 2, 3; 4, 5, 6]; %! [u, s, v] = svd (a, 1); %! assert (u * s * v', a, sqrt (eps)); %!test %! a = [1, 2; 3, 4; 5, 6]; %! [u, s, v] = svd (a, 1); %! assert (u * s * v', a, sqrt (eps)); %!assert(svd (single([1, 2; 2, 1])), single([3; 1]), sqrt (eps('single'))); %!test %! [u, s, v] = svd (single([1, 2; 2, 1])); %! x = single (1 / sqrt (2)); %! assert (u, [-x, -x; -x, x], sqrt (eps('single'))); %! assert (s, single([3, 0; 0, 1]), sqrt (eps('single'))); %! assert (v, [-x, x; -x, -x], sqrt (eps('single'))); %!test %! a = single([1, 2, 3; 4, 5, 6]); %! [u, s, v] = svd (a); %! assert (u * s * v', a, sqrt (eps('single'))); %!test %! a = single([1, 2; 3, 4; 5, 6]); %! [u, s, v] = svd (a); %! assert (u * s * v', a, sqrt (eps('single'))); %!test %! a = single([1, 2, 3; 4, 5, 6]); %! [u, s, v] = svd (a, 1); %! assert (u * s * v', a, sqrt (eps('single'))); %!test %! a = single([1, 2; 3, 4; 5, 6]); %! [u, s, v] = svd (a, 1); %! assert (u * s * v', a, sqrt (eps('single'))); %!test %! a = zeros (0, 5); %! [u, s, v] = svd (a); %! assert (size (u), [0, 0]); %! assert (size (s), [0, 5]); %! assert (size (v), [5, 5]); %!test %! a = zeros (5, 0); %! [u, s, v] = svd (a, 1); %! assert (size (u), [5, 0]); %! assert (size (s), [0, 0]); %! assert (size (v), [0, 0]); %!error <Invalid call to svd.*> svd (); %!error <Invalid call to svd.*> svd ([1, 2; 4, 5], 2, 3); %!error <Invalid call to svd.*> [u, v] = svd ([1, 2; 3, 4]); */ DEFUN_DLD (svd_driver, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{val} =} svd_driver ()\n\ @deftypefnx {Loadable Function} {@var{old_val} =} svd_driver (@var{new_val})\n\ Query or set the underlying @sc{lapack} driver used by @code{svd}.\n\ Currently recognized values are \"gesvd\" and \"gesdd\". The default\n\ is \"gesvd\".\n\ @seealso{svd}\n\ @end deftypefn") { static const char *driver_names[] = { "gesvd", "gesdd", 0 }; return SET_INTERNAL_VARIABLE_CHOICES (svd_driver, driver_names); }