view src/DLD-FUNCTIONS/svd.cc @ 13294:7dce7e110511

make concatenation of class objects work * data.h: New file. * src/Makefile.am (octinclude_HEADERS): Add it to the list. * data.cc (attempt_type_conversion): New static function. (do_class_concat): New function. (do_cat): Use it if any elements of the list are objects. Check whether any elements of the list are objects or cells. Check whether all elements of the list are complex. Check whether the first element of the list is a struct. Maybe convert elements of the list to cells. New tests for horzcat and vertcat. * data.h (do_class_concat): Provide decl. * ov-class.h (octave_class::octave_class): Allow optional parent list. * ov.h, ov.h (octave_value::octave_value (const Octave_map&, const std::string&)): Likewise. * pt-mat.cc (do_class_concat): New static function. (tree_matrix::rvalue1): Use it to concatenate objects.
author John W. Eaton <jwe@octave.org>
date Fri, 07 Oct 2011 22:16:07 -0400
parents 7ef7e20057fa
children 5fa482628bf6
line wrap: on
line source

/*

Copyright (C) 1996-2011 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "CmplxSVD.h"
#include "dbleSVD.h"
#include "fCmplxSVD.h"
#include "floatSVD.h"

#include "defun-dld.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "pr-output.h"
#include "utils.h"
#include "variables.h"

static int Vsvd_driver = SVD::GESVD;

DEFUN_DLD (svd, args, nargout,
  "-*- texinfo -*-\n\
@deftypefn  {Loadable Function} {@var{s} =} svd (@var{A})\n\
@deftypefnx {Loadable Function} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A})\n\
@deftypefnx {Loadable Function} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A}, @var{econ})\n\
@cindex singular value decomposition\n\
Compute the singular value decomposition of @var{A}\n\
@tex\n\
$$\n\
 A = U S V^{\\dagger}\n\
$$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
A = U*S*V'\n\
@end example\n\
\n\
@end ifnottex\n\
\n\
The function @code{svd} normally returns only the vector of singular values.\n\
When called with three return values, it computes\n\
@tex\n\
$U$, $S$, and $V$.\n\
@end tex\n\
@ifnottex\n\
@var{U}, @var{S}, and @var{V}.\n\
@end ifnottex\n\
For example,\n\
\n\
@example\n\
svd (hilb (3))\n\
@end example\n\
\n\
@noindent\n\
returns\n\
\n\
@example\n\
@group\n\
ans =\n\
\n\
  1.4083189\n\
  0.1223271\n\
  0.0026873\n\
@end group\n\
@end example\n\
\n\
@noindent\n\
and\n\
\n\
@example\n\
[u, s, v] = svd (hilb (3))\n\
@end example\n\
\n\
@noindent\n\
returns\n\
\n\
@example\n\
@group\n\
u =\n\
\n\
  -0.82704   0.54745   0.12766\n\
  -0.45986  -0.52829  -0.71375\n\
  -0.32330  -0.64901   0.68867\n\
\n\
s =\n\
\n\
  1.40832  0.00000  0.00000\n\
  0.00000  0.12233  0.00000\n\
  0.00000  0.00000  0.00269\n\
\n\
v =\n\
\n\
  -0.82704   0.54745   0.12766\n\
  -0.45986  -0.52829  -0.71375\n\
  -0.32330  -0.64901   0.68867\n\
@end group\n\
@end example\n\
\n\
If given a second argument, @code{svd} returns an economy-sized\n\
decomposition, eliminating the unnecessary rows or columns of @var{U} or\n\
@var{V}.\n\
@seealso{svd_driver, svds, eig}\n\
@end deftypefn")
{
  octave_value_list retval;

  int nargin = args.length ();

  if (nargin < 1 || nargin > 2 || nargout == 2 || nargout > 3)
    {
      print_usage ();
      return retval;
    }

  octave_value arg = args(0);

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  if (arg.ndims () != 2)
    {
      error ("svd: A must be a 2-D matrix");
      return retval;
    }

  bool isfloat = arg.is_single_type ();

  SVD::type type = ((nargout == 0 || nargout == 1)
                    ? SVD::sigma_only
                    : (nargin == 2) ? SVD::economy : SVD::std);

  SVD::driver driver = static_cast<SVD::driver> (Vsvd_driver);

  if (nr == 0 || nc == 0)
    {
      if (isfloat)
        {
          switch (type)
            {
            case SVD::std:
              retval(2) = FloatDiagMatrix (nc, nc, 1.0f);
              retval(1) = FloatMatrix (nr, nc);
              retval(0) = FloatDiagMatrix (nr, nr, 1.0f);
              break;
            case SVD::economy:
              retval(2) = FloatDiagMatrix (0, nc, 1.0f);
              retval(1) = FloatMatrix (0, 0);
              retval(0) = FloatDiagMatrix (nr, 0, 1.0f);
              break;
            case SVD::sigma_only: default:
              retval(0) = FloatMatrix (0, 1);
              break;
            }
        }
      else
        {
          switch (type)
            {
            case SVD::std:
              retval(2) = DiagMatrix (nc, nc, 1.0);
              retval(1) = Matrix (nr, nc);
              retval(0) = DiagMatrix (nr, nr, 1.0);
              break;
            case SVD::economy:
              retval(2) = DiagMatrix (0, nc, 1.0);
              retval(1) = Matrix (0, 0);
              retval(0) = DiagMatrix (nr, 0, 1.0);
              break;
            case SVD::sigma_only: default:
              retval(0) = Matrix (0, 1);
              break;
            }
        }
    }
  else
    {
      if (isfloat)
        {
          if (arg.is_real_type ())
            {
              FloatMatrix tmp = arg.float_matrix_value ();

              if (! error_state)
                {
                  if (tmp.any_element_is_inf_or_nan ())
                    {
                      error ("svd: cannot take SVD of matrix containing Inf or NaN values");
                      return retval;
                    }

                  FloatSVD result (tmp, type, driver);

                  FloatDiagMatrix sigma = result.singular_values ();

                  if (nargout == 0 || nargout == 1)
                    {
                      retval(0) = sigma.diag ();
                    }
                  else
                    {
                      retval(2) = result.right_singular_matrix ();
                      retval(1) = sigma;
                      retval(0) = result.left_singular_matrix ();
                    }
                }
            }
          else if (arg.is_complex_type ())
            {
              FloatComplexMatrix ctmp = arg.float_complex_matrix_value ();

              if (! error_state)
                {
                  if (ctmp.any_element_is_inf_or_nan ())
                    {
                      error ("svd: cannot take SVD of matrix containing Inf or NaN values");
                      return retval;
                    }

                  FloatComplexSVD result (ctmp, type, driver);

                  FloatDiagMatrix sigma = result.singular_values ();

                  if (nargout == 0 || nargout == 1)
                    {
                      retval(0) = sigma.diag ();
                    }
                  else
                    {
                      retval(2) = result.right_singular_matrix ();
                      retval(1) = sigma;
                      retval(0) = result.left_singular_matrix ();
                    }
                }
            }
        }
      else
        {
          if (arg.is_real_type ())
            {
              Matrix tmp = arg.matrix_value ();

              if (! error_state)
                {
                  if (tmp.any_element_is_inf_or_nan ())
                    {
                      error ("svd: cannot take SVD of matrix containing Inf or NaN values");
                      return retval;
                    }

                  SVD result (tmp, type, driver);

                  DiagMatrix sigma = result.singular_values ();

                  if (nargout == 0 || nargout == 1)
                    {
                      retval(0) = sigma.diag ();
                    }
                  else
                    {
                      retval(2) = result.right_singular_matrix ();
                      retval(1) = sigma;
                      retval(0) = result.left_singular_matrix ();
                    }
                }
            }
          else if (arg.is_complex_type ())
            {
              ComplexMatrix ctmp = arg.complex_matrix_value ();

              if (! error_state)
                {
                  if (ctmp.any_element_is_inf_or_nan ())
                    {
                      error ("svd: cannot take SVD of matrix containing Inf or NaN values");
                      return retval;
                    }

                  ComplexSVD result (ctmp, type, driver);

                  DiagMatrix sigma = result.singular_values ();

                  if (nargout == 0 || nargout == 1)
                    {
                      retval(0) = sigma.diag ();
                    }
                  else
                    {
                      retval(2) = result.right_singular_matrix ();
                      retval(1) = sigma;
                      retval(0) = result.left_singular_matrix ();
                    }
                }
            }
          else
            {
              gripe_wrong_type_arg ("svd", arg);
              return retval;
            }
        }
    }

  return retval;
}

/*

%!assert(svd ([1, 2; 2, 1]), [3; 1], sqrt (eps));

%!test
%! [u, s, v] = svd ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (u, [-x, -x; -x, x], sqrt (eps));
%! assert (s, [3, 0; 0, 1], sqrt (eps));
%! assert (v, [-x, x; -x, -x], sqrt (eps));

%!test
%! a = [1, 2, 3; 4, 5, 6];
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2; 3, 4; 5, 6];
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2, 3; 4, 5, 6];
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps));

%!test
%! a = [1, 2; 3, 4; 5, 6];
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps));

%!assert(svd (single([1, 2; 2, 1])), single([3; 1]), sqrt (eps('single')));

%!test
%! [u, s, v] = svd (single([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (u, [-x, -x; -x, x], sqrt (eps('single')));
%! assert (s, single([3, 0; 0, 1]), sqrt (eps('single')));
%! assert (v, [-x, x; -x, -x], sqrt (eps('single')));

%!test
%! a = single([1, 2, 3; 4, 5, 6]);
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps('single')));

%!test
%! a = single([1, 2; 3, 4; 5, 6]);
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps('single')));

%!test
%! a = single([1, 2, 3; 4, 5, 6]);
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps('single')));

%!test
%! a = single([1, 2; 3, 4; 5, 6]);
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps('single')));

%!test
%! a = zeros (0, 5);
%! [u, s, v] = svd (a);
%! assert (size (u), [0, 0]);
%! assert (size (s), [0, 5]);
%! assert (size (v), [5, 5]);

%!test
%! a = zeros (5, 0);
%! [u, s, v] = svd (a, 1);
%! assert (size (u), [5, 0]);
%! assert (size (s), [0, 0]);
%! assert (size (v), [0, 0]);

%!error <Invalid call to svd.*> svd ();
%!error <Invalid call to svd.*> svd ([1, 2; 4, 5], 2, 3);
%!error <Invalid call to svd.*> [u, v] = svd ([1, 2; 3, 4]);

*/

DEFUN_DLD (svd_driver, args, nargout,
  "-*- texinfo -*-\n\
@deftypefn  {Loadable Function} {@var{val} =} svd_driver ()\n\
@deftypefnx {Loadable Function} {@var{old_val} =} svd_driver (@var{new_val})\n\
Query or set the underlying @sc{lapack} driver used by @code{svd}.\n\
Currently recognized values are \"gesvd\" and \"gesdd\".  The default\n\
is \"gesvd\".\n\
@seealso{svd}\n\
@end deftypefn")
{
  static const char *driver_names[] = { "gesvd", "gesdd", 0 };

  return SET_INTERNAL_VARIABLE_CHOICES (svd_driver, driver_names);
}