Mercurial > hg > octave-nkf
view src/OPERATORS/op-dm-sm.cc @ 13294:7dce7e110511
make concatenation of class objects work
* data.h: New file.
* src/Makefile.am (octinclude_HEADERS): Add it to the list.
* data.cc (attempt_type_conversion): New static function.
(do_class_concat): New function.
(do_cat): Use it if any elements of the list are objects.
Check whether any elements of the list are objects or cells.
Check whether all elements of the list are complex.
Check whether the first element of the list is a struct.
Maybe convert elements of the list to cells.
New tests for horzcat and vertcat.
* data.h (do_class_concat): Provide decl.
* ov-class.h (octave_class::octave_class): Allow optional parent
list.
* ov.h, ov.h (octave_value::octave_value (const Octave_map&,
const std::string&)): Likewise.
* pt-mat.cc (do_class_concat): New static function.
(tree_matrix::rvalue1): Use it to concatenate objects.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 07 Oct 2011 22:16:07 -0400 |
parents | fd0a3ac60b0e |
children | 72c96de7a403 |
line wrap: on
line source
/* Copyright (C) 2009-2011 Jason Riedy, Jaroslav Hajek This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "gripes.h" #include "oct-obj.h" #include "ov.h" #include "ov-typeinfo.h" #include "ops.h" #include "ov-re-diag.h" #include "ov-re-sparse.h" #include "sparse-xdiv.h" // diagonal matrix by sparse matrix ops DEFBINOP (mul_dm_sm, diag_matrix, sparse_matrix) { CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_matrix&); if (v2.rows() == 1 && v2.columns() == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v2.scalar_value (); return octave_value (v1.diag_matrix_value () * d); } else { MatrixType typ = v2.matrix_type (); SparseMatrix ret = v1.diag_matrix_value () * v2.sparse_matrix_value (); octave_value out = octave_value (ret); typ.mark_as_unsymmetric (); out.matrix_type (typ); return out; } } DEFBINOP (ldiv_dm_sm, diag_matrix, sparse_matrix) { CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_matrix&); MatrixType typ = v2.matrix_type (); return xleftdiv (v1.diag_matrix_value (), v2.sparse_matrix_value (), typ); } DEFBINOP (add_dm_sm, diag_matrix, sparse_matrix) { CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_matrix&); if (v2.rows() == 1 && v2.columns() == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v2.scalar_value (); return octave_value (v1.matrix_value () + d); } else return v1.diag_matrix_value () + v2.sparse_matrix_value (); } DEFBINOP (sub_dm_sm, diag_matrix, sparse_matrix) { CAST_BINOP_ARGS (const octave_diag_matrix&, const octave_sparse_matrix&); if (v2.rows() == 1 && v2.columns() == 1) // If v2 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v2.scalar_value (); return octave_value (v1.matrix_value () - d); } else return v1.diag_matrix_value () - v2.sparse_matrix_value (); } // sparse matrix by diagonal matrix ops DEFBINOP (mul_sm_dm, sparse_matrix, diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_diag_matrix&); if (v1.rows() == 1 && v1.columns() == 1) // If v1 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v1.scalar_value (); return octave_value (d * v2.diag_matrix_value ()); } else { MatrixType typ = v1.matrix_type (); SparseMatrix ret = v1.sparse_matrix_value () * v2.diag_matrix_value (); octave_value out = octave_value (ret); typ.mark_as_unsymmetric (); out.matrix_type (typ); return out; } } DEFBINOP (div_sm_dm, sparse_matrix, diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_diag_matrix&); if (v2.rows() == 1 && v2.columns() == 1) { double d = v2.scalar_value (); if (d == 0.0) gripe_divide_by_zero (); return octave_value (v1.sparse_matrix_value () / d); } else { MatrixType typ = v2.matrix_type (); return xdiv (v1.sparse_matrix_value (), v2.diag_matrix_value (), typ); } } DEFBINOP (add_sm_dm, sparse_matrix, diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_diag_matrix&); if (v1.rows() == 1 && v1.columns() == 1) // If v1 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v1.scalar_value (); return octave_value (d + v2.matrix_value ()); } else return v1.sparse_matrix_value () + v2.diag_matrix_value (); } DEFBINOP (sub_sm_dm, sparse_matrix, diag_matrix) { CAST_BINOP_ARGS (const octave_sparse_matrix&, const octave_diag_matrix&); if (v1.rows() == 1 && v1.columns() == 1) // If v1 is a scalar in disguise, return a diagonal matrix rather than // a sparse matrix. { double d = v1.scalar_value (); return octave_value (d - v2.matrix_value ()); } else return v1.sparse_matrix_value () - v2.diag_matrix_value (); } void install_dm_sm_ops (void) { INSTALL_BINOP (op_mul, octave_diag_matrix, octave_sparse_matrix, mul_dm_sm); INSTALL_BINOP (op_add, octave_diag_matrix, octave_sparse_matrix, add_dm_sm); INSTALL_BINOP (op_sub, octave_diag_matrix, octave_sparse_matrix, sub_dm_sm); INSTALL_BINOP (op_ldiv, octave_diag_matrix, octave_sparse_matrix, ldiv_dm_sm); INSTALL_BINOP (op_mul, octave_sparse_matrix, octave_diag_matrix, mul_sm_dm); INSTALL_BINOP (op_add, octave_sparse_matrix, octave_diag_matrix, add_sm_dm); INSTALL_BINOP (op_sub, octave_sparse_matrix, octave_diag_matrix, sub_sm_dm); INSTALL_BINOP (op_div, octave_sparse_matrix, octave_diag_matrix, div_sm_dm); }