Mercurial > hg > octave-nkf
view src/sparse-xdiv.cc @ 13294:7dce7e110511
make concatenation of class objects work
* data.h: New file.
* src/Makefile.am (octinclude_HEADERS): Add it to the list.
* data.cc (attempt_type_conversion): New static function.
(do_class_concat): New function.
(do_cat): Use it if any elements of the list are objects.
Check whether any elements of the list are objects or cells.
Check whether all elements of the list are complex.
Check whether the first element of the list is a struct.
Maybe convert elements of the list to cells.
New tests for horzcat and vertcat.
* data.h (do_class_concat): Provide decl.
* ov-class.h (octave_class::octave_class): Allow optional parent
list.
* ov.h, ov.h (octave_value::octave_value (const Octave_map&,
const std::string&)): Likewise.
* pt-mat.cc (do_class_concat): New static function.
(tree_matrix::rvalue1): Use it to concatenate objects.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 07 Oct 2011 22:16:07 -0400 |
parents | 12df7854fa7c |
children | 72c96de7a403 |
line wrap: on
line source
/* Copyright (C) 2004-2011 David Bateman Copyright (C) 1998-2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cassert> #include "Array-util.h" #include "oct-cmplx.h" #include "quit.h" #include "error.h" #include "lo-ieee.h" #include "dSparse.h" #include "dDiagMatrix.h" #include "CSparse.h" #include "CDiagMatrix.h" #include "oct-spparms.h" #include "sparse-xdiv.h" static void solve_singularity_warning (double rcond) { warning ("matrix singular to machine precision, rcond = %g", rcond); warning ("attempting to find minimum norm solution"); } template <class T1, class T2> bool mx_leftdiv_conform (const T1& a, const T2& b) { octave_idx_type a_nr = a.rows (); octave_idx_type b_nr = b.rows (); if (a_nr != b_nr) { octave_idx_type a_nc = a.cols (); octave_idx_type b_nc = b.cols (); gripe_nonconformant ("operator \\", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_LEFTDIV_CONFORM(T1, T2) \ template bool mx_leftdiv_conform (const T1&, const T2&) INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, SparseComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, SparseComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, ComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, ComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (DiagMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (DiagMatrix, SparseComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexDiagMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexDiagMatrix, SparseComplexMatrix); template <class T1, class T2> bool mx_div_conform (const T1& a, const T2& b) { octave_idx_type a_nc = a.cols (); octave_idx_type b_nc = b.cols (); if (a_nc != b_nc) { octave_idx_type a_nr = a.rows (); octave_idx_type b_nr = b.rows (); gripe_nonconformant ("operator /", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_DIV_CONFORM(T1, T2) \ template bool mx_div_conform (const T1&, const T2&) INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (Matrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (Matrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, DiagMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, ComplexDiagMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, DiagMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, ComplexDiagMatrix); // Right division functions. X / Y = X * inv(Y) = (inv (Y') * X')' // // Y / X: m cm sm scm // +-- +---+----+----+----+ // sparse matrix | 1 | 3 | 5 | 7 | // +---+----+----+----+ // sparse complex_matrix | 2 | 4 | 6 | 8 | // +---+----+----+----+ // diagonal matrix | 9 | 11 | // +----+----+ // complex diag. matrix | 10 | 12 | // +----+----+ // -*- 1 -*- Matrix xdiv (const Matrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return Matrix (); Matrix atmp = a.transpose (); SparseMatrix btmp = b.transpose (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; Matrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.transpose (); } // -*- 2 -*- ComplexMatrix xdiv (const Matrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); Matrix atmp = a.transpose (); SparseComplexMatrix btmp = b.hermitian (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 3 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); ComplexMatrix atmp = a.hermitian (); SparseMatrix btmp = b.transpose (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 4 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); ComplexMatrix atmp = a.hermitian (); SparseComplexMatrix btmp = b.hermitian (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 5 -*- SparseMatrix xdiv (const SparseMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return SparseMatrix (); SparseMatrix atmp = a.transpose (); SparseMatrix btmp = b.transpose (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; SparseMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.transpose (); } // -*- 6 -*- SparseComplexMatrix xdiv (const SparseMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseMatrix atmp = a.transpose (); SparseComplexMatrix btmp = b.hermitian (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; SparseComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 7 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseComplexMatrix atmp = a.hermitian (); SparseMatrix btmp = b.transpose (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; SparseComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 8 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseComplexMatrix atmp = a.hermitian (); SparseComplexMatrix btmp = b.hermitian (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; SparseComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } template <typename RT, typename SM, typename DM> RT do_rightdiv_sm_dm (const SM& a, const DM& d) { const octave_idx_type d_nr = d.rows (); const octave_idx_type a_nr = a.rows (); const octave_idx_type a_nc = a.cols (); using std::min; const octave_idx_type nc = min (d_nr, a_nc); if ( ! mx_div_conform (a, d)) return RT (); const octave_idx_type nz = a.nnz (); RT r (a_nr, nc, nz); typedef typename DM::element_type DM_elt_type; const DM_elt_type zero = DM_elt_type (); octave_idx_type k_result = 0; for (octave_idx_type j = 0; j < nc; ++j) { octave_quit (); const DM_elt_type s = d.dgelem (j); const octave_idx_type colend = a.cidx (j+1); r.xcidx (j) = k_result; if (s != zero) for (octave_idx_type k = a.cidx (j); k < colend; ++k) { r.xdata (k_result) = a.data (k) / s; r.xridx (k_result) = a.ridx (k); ++k_result; } } r.xcidx (nc) = k_result; r.maybe_compress (true); return r; } // -*- 9 -*- SparseMatrix xdiv (const SparseMatrix& a, const DiagMatrix& b, MatrixType &) { return do_rightdiv_sm_dm<SparseMatrix> (a, b); } // -*- 10 -*- SparseComplexMatrix xdiv (const SparseMatrix& a, const ComplexDiagMatrix& b, MatrixType &) { return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b); } // -*- 11 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const DiagMatrix& b, MatrixType &) { return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b); } // -*- 12 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const ComplexDiagMatrix& b, MatrixType &) { return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b); } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ Matrix x_el_div (double a, const SparseMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); Matrix result; if (a == 0.) result = Matrix (nr, nc, octave_NaN); else if (a > 0.) result = Matrix (nr, nc, octave_Inf); else result = Matrix (nr, nc, -octave_Inf); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { octave_quit (); result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (double a, const SparseComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); ComplexMatrix result (nr, nc, Complex(octave_NaN, octave_NaN)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { octave_quit (); result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (const Complex a, const SparseMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); ComplexMatrix result (nr, nc, (a / 0.0)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { octave_quit (); result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (const Complex a, const SparseComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); ComplexMatrix result (nr, nc, (a / 0.0)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { octave_quit (); result.elem (b.ridx(i), j) = a / b.data (i); } return result; } // Left division functions. X \ Y = inv(X) * Y // // Y \ X : sm scm dm dcm // +-- +---+----+ // matrix | 1 | 5 | // +---+----+ // complex_matrix | 2 | 6 | // +---+----+----+----+ // sparse matrix | 3 | 7 | 9 | 11 | // +---+----+----+----+ // sparse complex_matrix | 4 | 8 | 10 | 12 | // +---+----+----+----+ // -*- 1 -*- Matrix xleftdiv (const SparseMatrix& a, const Matrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return Matrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 2 -*- ComplexMatrix xleftdiv (const SparseMatrix& a, const ComplexMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 3 -*- SparseMatrix xleftdiv (const SparseMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return SparseMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 4 -*- SparseComplexMatrix xleftdiv (const SparseMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 5 -*- ComplexMatrix xleftdiv (const SparseComplexMatrix& a, const Matrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 6 -*- ComplexMatrix xleftdiv (const SparseComplexMatrix& a, const ComplexMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 7 -*- SparseComplexMatrix xleftdiv (const SparseComplexMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 8 -*- SparseComplexMatrix xleftdiv (const SparseComplexMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } template <typename RT, typename DM, typename SM> RT do_leftdiv_dm_sm (const DM& d, const SM& a) { const octave_idx_type a_nr = a.rows (); const octave_idx_type a_nc = a.cols (); const octave_idx_type d_nc = d.cols (); using std::min; const octave_idx_type nr = min (d_nc, a_nr); if ( ! mx_leftdiv_conform (d, a)) return RT (); const octave_idx_type nz = a.nnz (); RT r (nr, a_nc, nz); typedef typename DM::element_type DM_elt_type; const DM_elt_type zero = DM_elt_type (); octave_idx_type k_result = 0; for (octave_idx_type j = 0; j < a_nc; ++j) { octave_quit (); const octave_idx_type colend = a.cidx (j+1); r.xcidx (j) = k_result; for (octave_idx_type k = a.cidx (j); k < colend; ++k) { const octave_idx_type i = a.ridx (k); if (i < nr) { const DM_elt_type s = d.dgelem (i); if (s != zero) { r.xdata (k_result) = a.data (k) / s; r.xridx (k_result) = i; ++k_result; } } } } r.xcidx (a_nc) = k_result; r.maybe_compress (true); return r; } // -*- 9 -*- SparseMatrix xleftdiv (const DiagMatrix& d, const SparseMatrix& a, MatrixType&) { return do_leftdiv_dm_sm<SparseMatrix> (d, a); } // -*- 10 -*- SparseComplexMatrix xleftdiv (const DiagMatrix& d, const SparseComplexMatrix& a, MatrixType&) { return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a); } // -*- 11 -*- SparseComplexMatrix xleftdiv (const ComplexDiagMatrix& d, const SparseMatrix& a, MatrixType&) { return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a); } // -*- 12 -*- SparseComplexMatrix xleftdiv (const ComplexDiagMatrix& d, const SparseComplexMatrix& a, MatrixType&) { return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a); }