Mercurial > hg > octave-nkf
view liboctave/numeric/EIG.cc @ 20685:7fa1970a655d
pkg.m: drop check of nargout value, the interpreter already does that.
* scripts/pkg/pkg.m: the interpreter already checks if there was any variable
that got no value assigned, there's no need to make the code more
complicated to cover that. Also, there's no point in calling describe()
with different nargout since it doesn't check nargout.
author | Carnë Draug <carandraug@octave.org> |
---|---|
date | Thu, 03 Sep 2015 16:21:08 +0100 |
parents | 4197fc428c7d |
children | ff904ae0285b |
line wrap: on
line source
/* Copyright (C) 1994-2015 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "EIG.h" #include "dColVector.h" #include "f77-fcn.h" #include "lo-error.h" extern "C" { F77_RET_T F77_FUNC (dgeev, DGEEV) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, double*, double*, double*, const octave_idx_type&, double*, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zgeev, ZGEEV) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, Complex*, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, const octave_idx_type&, double*, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dsyev, DSYEV) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, double*, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zheev, ZHEEV) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, Complex*, const octave_idx_type&, double*, Complex*, const octave_idx_type&, double*, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dpotrf, DPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zpotrf, ZPOTRF) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, Complex*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dggev, DGGEV) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, double*, const octave_idx_type&, double*, double*, double *, double*, const octave_idx_type&, double*, const octave_idx_type&, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (dsygv, DSYGV) (const octave_idx_type&, F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, double*, const octave_idx_type&, double*, const octave_idx_type&, double*, double*, const octave_idx_type&, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zggev, ZGGEV) (F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, Complex*, Complex*, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, const octave_idx_type&, double*, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); F77_RET_T F77_FUNC (zhegv, ZHEGV) (const octave_idx_type&, F77_CONST_CHAR_ARG_DECL, F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, Complex*, const octave_idx_type&, Complex*, const octave_idx_type&, double*, Complex*, const octave_idx_type&, double*, octave_idx_type& F77_CHAR_ARG_LEN_DECL F77_CHAR_ARG_LEN_DECL); } octave_idx_type EIG::init (const Matrix& a, bool calc_ev) { if (a.any_element_is_inf_or_nan ()) { (*current_liboctave_error_handler) ("EIG: matrix contains Inf or NaN values"); return -1; } if (a.is_symmetric ()) return symmetric_init (a, calc_ev); octave_idx_type n = a.rows (); if (n != a.cols ()) { (*current_liboctave_error_handler) ("EIG requires square matrix"); return -1; } octave_idx_type info = 0; Matrix atmp = a; double *tmp_data = atmp.fortran_vec (); Array<double> wr (dim_vector (n, 1)); double *pwr = wr.fortran_vec (); Array<double> wi (dim_vector (n, 1)); double *pwi = wi.fortran_vec (); octave_idx_type tnvr = calc_ev ? n : 0; Matrix vr (tnvr, tnvr); double *pvr = vr.fortran_vec (); octave_idx_type lwork = -1; double dummy_work; double *dummy = 0; octave_idx_type idummy = 1; F77_XFCN (dgeev, DGEEV, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), n, tmp_data, n, pwr, pwi, dummy, idummy, pvr, n, &dummy_work, lwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info == 0) { lwork = static_cast<octave_idx_type> (dummy_work); Array<double> work (dim_vector (lwork, 1)); double *pwork = work.fortran_vec (); F77_XFCN (dgeev, DGEEV, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), n, tmp_data, n, pwr, pwi, dummy, idummy, pvr, n, pwork, lwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info < 0) { (*current_liboctave_error_handler) ("unrecoverable error in dgeev"); return info; } if (info > 0) { (*current_liboctave_error_handler) ("dgeev failed to converge"); return info; } lambda.resize (n); octave_idx_type nvr = calc_ev ? n : 0; v.resize (nvr, nvr); for (octave_idx_type j = 0; j < n; j++) { if (wi.elem (j) == 0.0) { lambda.elem (j) = Complex (wr.elem (j)); for (octave_idx_type i = 0; i < nvr; i++) v.elem (i, j) = vr.elem (i, j); } else { if (j+1 >= n) { (*current_liboctave_error_handler) ("EIG: internal error"); return -1; } lambda.elem (j) = Complex (wr.elem (j), wi.elem (j)); lambda.elem (j+1) = Complex (wr.elem (j+1), wi.elem (j+1)); for (octave_idx_type i = 0; i < nvr; i++) { double real_part = vr.elem (i, j); double imag_part = vr.elem (i, j+1); v.elem (i, j) = Complex (real_part, imag_part); v.elem (i, j+1) = Complex (real_part, -imag_part); } j++; } } } else (*current_liboctave_error_handler) ("dgeev workspace query failed"); return info; } octave_idx_type EIG::symmetric_init (const Matrix& a, bool calc_ev) { octave_idx_type n = a.rows (); if (n != a.cols ()) { (*current_liboctave_error_handler) ("EIG requires square matrix"); return -1; } octave_idx_type info = 0; Matrix atmp = a; double *tmp_data = atmp.fortran_vec (); ColumnVector wr (n); double *pwr = wr.fortran_vec (); octave_idx_type lwork = -1; double dummy_work; F77_XFCN (dsyev, DSYEV, (F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), F77_CONST_CHAR_ARG2 ("U", 1), n, tmp_data, n, pwr, &dummy_work, lwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info == 0) { lwork = static_cast<octave_idx_type> (dummy_work); Array<double> work (dim_vector (lwork, 1)); double *pwork = work.fortran_vec (); F77_XFCN (dsyev, DSYEV, (F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), F77_CONST_CHAR_ARG2 ("U", 1), n, tmp_data, n, pwr, pwork, lwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info < 0) { (*current_liboctave_error_handler) ("unrecoverable error in dsyev"); return info; } if (info > 0) { (*current_liboctave_error_handler) ("dsyev failed to converge"); return info; } lambda = ComplexColumnVector (wr); v = calc_ev ? ComplexMatrix (atmp) : ComplexMatrix (); } else (*current_liboctave_error_handler) ("dsyev workspace query failed"); return info; } octave_idx_type EIG::init (const ComplexMatrix& a, bool calc_ev) { if (a.any_element_is_inf_or_nan ()) { (*current_liboctave_error_handler) ("EIG: matrix contains Inf or NaN values"); return -1; } if (a.is_hermitian ()) return hermitian_init (a, calc_ev); octave_idx_type n = a.rows (); if (n != a.cols ()) { (*current_liboctave_error_handler) ("EIG requires square matrix"); return -1; } octave_idx_type info = 0; ComplexMatrix atmp = a; Complex *tmp_data = atmp.fortran_vec (); ComplexColumnVector w (n); Complex *pw = w.fortran_vec (); octave_idx_type nvr = calc_ev ? n : 0; ComplexMatrix vtmp (nvr, nvr); Complex *pv = vtmp.fortran_vec (); octave_idx_type lwork = -1; Complex dummy_work; octave_idx_type lrwork = 2*n; Array<double> rwork (dim_vector (lrwork, 1)); double *prwork = rwork.fortran_vec (); Complex *dummy = 0; octave_idx_type idummy = 1; F77_XFCN (zgeev, ZGEEV, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), n, tmp_data, n, pw, dummy, idummy, pv, n, &dummy_work, lwork, prwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info == 0) { lwork = static_cast<octave_idx_type> (dummy_work.real ()); Array<Complex> work (dim_vector (lwork, 1)); Complex *pwork = work.fortran_vec (); F77_XFCN (zgeev, ZGEEV, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), n, tmp_data, n, pw, dummy, idummy, pv, n, pwork, lwork, prwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info < 0) { (*current_liboctave_error_handler) ("unrecoverable error in zgeev"); return info; } if (info > 0) { (*current_liboctave_error_handler) ("zgeev failed to converge"); return info; } lambda = w; v = vtmp; } else (*current_liboctave_error_handler) ("zgeev workspace query failed"); return info; } octave_idx_type EIG::hermitian_init (const ComplexMatrix& a, bool calc_ev) { octave_idx_type n = a.rows (); if (n != a.cols ()) { (*current_liboctave_error_handler) ("EIG requires square matrix"); return -1; } octave_idx_type info = 0; ComplexMatrix atmp = a; Complex *tmp_data = atmp.fortran_vec (); ColumnVector wr (n); double *pwr = wr.fortran_vec (); octave_idx_type lwork = -1; Complex dummy_work; octave_idx_type lrwork = 3*n; Array<double> rwork (dim_vector (lrwork, 1)); double *prwork = rwork.fortran_vec (); F77_XFCN (zheev, ZHEEV, (F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), F77_CONST_CHAR_ARG2 ("U", 1), n, tmp_data, n, pwr, &dummy_work, lwork, prwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info == 0) { lwork = static_cast<octave_idx_type> (dummy_work.real ()); Array<Complex> work (dim_vector (lwork, 1)); Complex *pwork = work.fortran_vec (); F77_XFCN (zheev, ZHEEV, (F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), F77_CONST_CHAR_ARG2 ("U", 1), n, tmp_data, n, pwr, pwork, lwork, prwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info < 0) { (*current_liboctave_error_handler) ("unrecoverable error in zheev"); return info; } if (info > 0) { (*current_liboctave_error_handler) ("zheev failed to converge"); return info; } lambda = ComplexColumnVector (wr); v = calc_ev ? ComplexMatrix (atmp) : ComplexMatrix (); } else (*current_liboctave_error_handler) ("zheev workspace query failed"); return info; } octave_idx_type EIG::init (const Matrix& a, const Matrix& b, bool calc_ev) { if (a.any_element_is_inf_or_nan () || b.any_element_is_inf_or_nan ()) { (*current_liboctave_error_handler) ("EIG: matrix contains Inf or NaN values"); return -1; } octave_idx_type n = a.rows (); octave_idx_type nb = b.rows (); if (n != a.cols () || nb != b.cols ()) { (*current_liboctave_error_handler) ("EIG requires square matrix"); return -1; } if (n != nb) { (*current_liboctave_error_handler) ("EIG requires same size matrices"); return -1; } octave_idx_type info = 0; Matrix tmp = b; double *tmp_data = tmp.fortran_vec (); F77_XFCN (dpotrf, DPOTRF, (F77_CONST_CHAR_ARG2 ("L", 1), n, tmp_data, n, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (a.is_symmetric () && b.is_symmetric () && info == 0) return symmetric_init (a, b, calc_ev); Matrix atmp = a; double *atmp_data = atmp.fortran_vec (); Matrix btmp = b; double *btmp_data = btmp.fortran_vec (); Array<double> ar (dim_vector (n, 1)); double *par = ar.fortran_vec (); Array<double> ai (dim_vector (n, 1)); double *pai = ai.fortran_vec (); Array<double> beta (dim_vector (n, 1)); double *pbeta = beta.fortran_vec (); octave_idx_type tnvr = calc_ev ? n : 0; Matrix vr (tnvr, tnvr); double *pvr = vr.fortran_vec (); octave_idx_type lwork = -1; double dummy_work; double *dummy = 0; octave_idx_type idummy = 1; F77_XFCN (dggev, DGGEV, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), n, atmp_data, n, btmp_data, n, par, pai, pbeta, dummy, idummy, pvr, n, &dummy_work, lwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info == 0) { lwork = static_cast<octave_idx_type> (dummy_work); Array<double> work (dim_vector (lwork, 1)); double *pwork = work.fortran_vec (); F77_XFCN (dggev, DGGEV, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), n, atmp_data, n, btmp_data, n, par, pai, pbeta, dummy, idummy, pvr, n, pwork, lwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info < 0) { (*current_liboctave_error_handler) ("unrecoverable error in dggev"); return info; } if (info > 0) { (*current_liboctave_error_handler) ("dggev failed to converge"); return info; } lambda.resize (n); octave_idx_type nvr = calc_ev ? n : 0; v.resize (nvr, nvr); for (octave_idx_type j = 0; j < n; j++) { if (ai.elem (j) == 0.0) { lambda.elem (j) = Complex (ar.elem (j) / beta.elem (j)); for (octave_idx_type i = 0; i < nvr; i++) v.elem (i, j) = vr.elem (i, j); } else { if (j+1 >= n) { (*current_liboctave_error_handler) ("EIG: internal error"); return -1; } lambda.elem (j) = Complex (ar.elem (j) / beta.elem (j), ai.elem (j) / beta.elem (j)); lambda.elem (j+1) = Complex (ar.elem (j+1) / beta.elem (j+1), ai.elem (j+1) / beta.elem (j+1)); for (octave_idx_type i = 0; i < nvr; i++) { double real_part = vr.elem (i, j); double imag_part = vr.elem (i, j+1); v.elem (i, j) = Complex (real_part, imag_part); v.elem (i, j+1) = Complex (real_part, -imag_part); } j++; } } } else (*current_liboctave_error_handler) ("dggev workspace query failed"); return info; } octave_idx_type EIG::symmetric_init (const Matrix& a, const Matrix& b, bool calc_ev) { octave_idx_type n = a.rows (); octave_idx_type nb = b.rows (); if (n != a.cols () || nb != b.cols ()) { (*current_liboctave_error_handler) ("EIG requires square matrix"); return -1; } if (n != nb) { (*current_liboctave_error_handler) ("EIG requires same size matrices"); return -1; } octave_idx_type info = 0; Matrix atmp = a; double *atmp_data = atmp.fortran_vec (); Matrix btmp = b; double *btmp_data = btmp.fortran_vec (); ColumnVector wr (n); double *pwr = wr.fortran_vec (); octave_idx_type lwork = -1; double dummy_work; F77_XFCN (dsygv, DSYGV, (1, F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), F77_CONST_CHAR_ARG2 ("U", 1), n, atmp_data, n, btmp_data, n, pwr, &dummy_work, lwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info == 0) { lwork = static_cast<octave_idx_type> (dummy_work); Array<double> work (dim_vector (lwork, 1)); double *pwork = work.fortran_vec (); F77_XFCN (dsygv, DSYGV, (1, F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), F77_CONST_CHAR_ARG2 ("U", 1), n, atmp_data, n, btmp_data, n, pwr, pwork, lwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info < 0) { (*current_liboctave_error_handler) ("unrecoverable error in dsygv"); return info; } if (info > 0) { (*current_liboctave_error_handler) ("dsygv failed to converge"); return info; } lambda = ComplexColumnVector (wr); v = calc_ev ? ComplexMatrix (atmp) : ComplexMatrix (); } else (*current_liboctave_error_handler) ("dsygv workspace query failed"); return info; } octave_idx_type EIG::init (const ComplexMatrix& a, const ComplexMatrix& b, bool calc_ev) { if (a.any_element_is_inf_or_nan () || b.any_element_is_inf_or_nan ()) { (*current_liboctave_error_handler) ("EIG: matrix contains Inf or NaN values"); return -1; } octave_idx_type n = a.rows (); octave_idx_type nb = b.rows (); if (n != a.cols () || nb != b.cols ()) { (*current_liboctave_error_handler) ("EIG requires square matrix"); return -1; } if (n != nb) { (*current_liboctave_error_handler) ("EIG requires same size matrices"); return -1; } octave_idx_type info = 0; ComplexMatrix tmp = b; Complex*tmp_data = tmp.fortran_vec (); F77_XFCN (zpotrf, ZPOTRF, (F77_CONST_CHAR_ARG2 ("L", 1), n, tmp_data, n, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (a.is_hermitian () && b.is_hermitian () && info == 0) return hermitian_init (a, calc_ev); ComplexMatrix atmp = a; Complex *atmp_data = atmp.fortran_vec (); ComplexMatrix btmp = b; Complex *btmp_data = btmp.fortran_vec (); ComplexColumnVector alpha (n); Complex *palpha = alpha.fortran_vec (); ComplexColumnVector beta (n); Complex *pbeta = beta.fortran_vec (); octave_idx_type nvr = calc_ev ? n : 0; ComplexMatrix vtmp (nvr, nvr); Complex *pv = vtmp.fortran_vec (); octave_idx_type lwork = -1; Complex dummy_work; octave_idx_type lrwork = 8*n; Array<double> rwork (dim_vector (lrwork, 1)); double *prwork = rwork.fortran_vec (); Complex *dummy = 0; octave_idx_type idummy = 1; F77_XFCN (zggev, ZGGEV, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), n, atmp_data, n, btmp_data, n, palpha, pbeta, dummy, idummy, pv, n, &dummy_work, lwork, prwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info == 0) { lwork = static_cast<octave_idx_type> (dummy_work.real ()); Array<Complex> work (dim_vector (lwork, 1)); Complex *pwork = work.fortran_vec (); F77_XFCN (zggev, ZGGEV, (F77_CONST_CHAR_ARG2 ("N", 1), F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), n, atmp_data, n, btmp_data, n, palpha, pbeta, dummy, idummy, pv, n, pwork, lwork, prwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info < 0) { (*current_liboctave_error_handler) ("unrecoverable error in zggev"); return info; } if (info > 0) { (*current_liboctave_error_handler) ("zggev failed to converge"); return info; } lambda.resize (n); for (octave_idx_type j = 0; j < n; j++) lambda.elem (j) = alpha.elem (j) / beta.elem (j); v = vtmp; } else (*current_liboctave_error_handler) ("zggev workspace query failed"); return info; } octave_idx_type EIG::hermitian_init (const ComplexMatrix& a, const ComplexMatrix& b, bool calc_ev) { octave_idx_type n = a.rows (); octave_idx_type nb = b.rows (); if (n != a.cols () || nb != b.cols ()) { (*current_liboctave_error_handler) ("EIG requires square matrix"); return -1; } if (n != nb) { (*current_liboctave_error_handler) ("EIG requires same size matrices"); return -1; } octave_idx_type info = 0; ComplexMatrix atmp = a; Complex *atmp_data = atmp.fortran_vec (); ComplexMatrix btmp = b; Complex *btmp_data = btmp.fortran_vec (); ColumnVector wr (n); double *pwr = wr.fortran_vec (); octave_idx_type lwork = -1; Complex dummy_work; octave_idx_type lrwork = 3*n; Array<double> rwork (dim_vector (lrwork, 1)); double *prwork = rwork.fortran_vec (); F77_XFCN (zhegv, ZHEGV, (1, F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), F77_CONST_CHAR_ARG2 ("U", 1), n, atmp_data, n, btmp_data, n, pwr, &dummy_work, lwork, prwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info == 0) { lwork = static_cast<octave_idx_type> (dummy_work.real ()); Array<Complex> work (dim_vector (lwork, 1)); Complex *pwork = work.fortran_vec (); F77_XFCN (zhegv, ZHEGV, (1, F77_CONST_CHAR_ARG2 (calc_ev ? "V" : "N", 1), F77_CONST_CHAR_ARG2 ("U", 1), n, atmp_data, n, btmp_data, n, pwr, pwork, lwork, prwork, info F77_CHAR_ARG_LEN (1) F77_CHAR_ARG_LEN (1))); if (info < 0) { (*current_liboctave_error_handler) ("unrecoverable error in zhegv"); return info; } if (info > 0) { (*current_liboctave_error_handler) ("zhegv failed to converge"); return info; } lambda = ComplexColumnVector (wr); v = calc_ev ? ComplexMatrix (atmp) : ComplexMatrix (); } else (*current_liboctave_error_handler) ("zhegv workspace query failed"); return info; }