Mercurial > hg > octave-nkf
view scripts/linear-algebra/planerot.m @ 20771:87b557ee8e5d
clean up and vectorize code for dense output in ode45
* scripts/ode/private/ode_rk_interpolate.m: new file
* scripts/ode/private/ode_rk_interpolate.m(hermite_quartic_interpolation):
move to internal function, use vectorization and broadcasting.
* scripts/ode/private/hermite_quartic_interpolation.m: remove file
* scripts/ode/module.mk: list added and removed files
* scripts/ode/private/integrate_adaptive.m: use new interpolation code.
author | Carlo de Falco <carlo.defalco@polimi.it> |
---|---|
date | Tue, 06 Oct 2015 19:28:59 +0200 |
parents | 4197fc428c7d |
children |
line wrap: on
line source
## Copyright (C) 2008-2015 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{G}, @var{y}] =} planerot (@var{x}) ## Given a two-element column vector, return the ## @tex ## $2 \times 2$ orthogonal matrix ## @end tex ## @ifnottex ## 2 by 2 orthogonal matrix ## @end ifnottex ## @var{G} such that ## @code{@var{y} = @var{g} * @var{x}} and @code{@var{y}(2) = 0}. ## @seealso{givens} ## @end deftypefn function [G, y] = planerot (x) if (nargin != 1) print_usage (); elseif (! (isvector (x) && numel (x) == 2)) error ("planerot: X must be a 2-element vector"); endif G = givens (x(1), x(2)); y = G * x(:); endfunction %!test %! x = [3 4]; %! [g y] = planerot (x); %! assert (g, [x(1) x(2); -x(2) x(1)] / sqrt (x(1)^2 + x(2)^2), 2e-8); %! assert (y(2), 0, 2e-8); %!error planerot () %!error planerot (1,2) %!error <X must be a 2-element vector> planerot (ones (2,2)) %!error <X must be a 2-element vector> planerot ([0 0 0])