Mercurial > hg > octave-nkf
view scripts/plot/draw/fplot.m @ 19016:87c3848cf3c0
Fix bug when hggroup used with primitive graphic object (bug #42532).
* image.m, text.m, line.m, patch.m: __plt_get_axis_arg__ will return axis and
hggroup when 'parent' property is used. Select the first returned object
which is the axes, rather than passing both axis and hggroup to further plot
subroutines.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 10 Jun 2014 14:03:09 -0700 |
parents | 6fdd3ab55b78 |
children | 446c46af4b42 |
line wrap: on
line source
## Copyright (C) 2005-2013 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} fplot (@var{fn}, @var{limits}) ## @deftypefnx {Function File} {} fplot (@dots{}, @var{tol}) ## @deftypefnx {Function File} {} fplot (@dots{}, @var{n}) ## @deftypefnx {Function File} {} fplot (@dots{}, @var{fmt}) ## @deftypefnx {Function File} {[@var{x}, @var{y}] =} fplot (@dots{}) ## Plot a function @var{fn} within the range defined by @var{limits}. ## ## @var{fn} is a function handle, inline function, or string containing the ## name of the function to evaluate. ## ## The limits of the plot are of the form @w{@code{[@var{xlo}, @var{xhi}]}} or ## @w{@code{[@var{xlo}, @var{xhi}, @var{ylo}, @var{yhi}]}}. ## ## The next three arguments are all optional and any number of them may be ## given in any order. ## ## @var{tol} is the relative tolerance to use for the plot and defaults ## to 2e-3 (.2%). ## ## @var{n} is the minimum number of points to use. When @var{n} is specified, ## the maximum stepsize will be @code{@var{xhi} - @var{xlo} / @var{n}}. More ## than @var{n} points may still be used in order to meet the relative ## tolerance requirement. ## ## The @var{fmt} argument specifies the linestyle to be used by the plot ## command. ## ## If the first argument @var{hax} is an axes handle, then plot into this axis, ## rather than the current axes returned by @code{gca}. ## ## With no output arguments the results are immediately plotted. With two ## output arguments the 2-D plot data is returned. The data can subsequently ## be plotted manually with @code{plot (@var{x}, @var{y})}. ## ## Example: ## ## @example ## @group ## fplot (@@cos, [0, 2*pi]) ## fplot ("[cos(x), sin(x)]", [0, 2*pi]) ## @end group ## @end example ## ## Note: @code{fplot} works best with continuous functions. Functions with ## discontinuities are unlikely to plot well. This restriction may be removed ## in the future. ## @seealso{ezplot, plot} ## @end deftypefn ## Author: Paul Kienzle <pkienzle@users.sf.net> function [X, Y] = fplot (varargin) [hax, varargin, nargin] = __plt_get_axis_arg__ ("fplot", varargin{:}); if (nargin < 2 || nargin > 5) print_usage (); endif fn = varargin{1}; limits = varargin{2}; varargin = varargin(3:end); if (strcmp (typeinfo (fn), "inline function")) fn = vectorize (fn); nam = formula (fn); elseif (isa (fn, "function_handle")) nam = func2str (fn); elseif (all (isalnum (fn))) nam = fn; elseif (ischar (fn)) fn = vectorize (inline (fn)); nam = formula (fn); else error ("fplot: FN must be a function handle, inline function, or string"); endif if (iscomplex (limits) || (numel (limits) != 2 && numel (limits) != 4)) error ("fplot: LIMITS must be a real vector with 2 or 4 elements"); endif n = 5; tol = 2e-3; fmt = ""; for i = 1:numel (varargin) arg = varargin{i}; if (ischar (arg)) fmt = arg; elseif (isnumeric (arg) && isscalar (arg) && arg > 0) if (arg == fix (arg)) n = arg; else tol = arg; endif else error ("fplot: bad input in position %d", i+2); endif endfor if (n != 5) ## n was specified x0 = linspace (limits(1), limits(2), n/2 + 1)'; y0 = feval (fn, x0); x = linspace (limits(1), limits(2), n)'; y = feval (fn, x); else x0 = linspace (limits(1), limits(2), 5)'; y0 = feval (fn, x0); n = 8; x = linspace (limits(1), limits(2), n)'; y = feval (fn, x); endif if (rows (x0) != rows (y0)) ## FN is a constant value function y0 = repmat (y0, size (x0)); y = repmat (y, size (x)); endif err0 = Inf; ## FIXME: This algorithm should really use adaptive scaling as the ## the numerical quadrature algorithms do so that extra points are ## used where they are needed and not spread evenly over the entire ## x-range. Try any function with a discontinuity, such as ## fplot (@tan, [-2, 2]) or fplot ("1./x", [-3, 2]), to see the ## problems with the current solution. while (n < 2^18) # Something is wrong if we need more than 250K points yi = interp1 (x0, y0, x, "linear"); ## relative error calculation using average of [yi,y] as reference ## since neither estimate is known a priori to be better than the other. err = 0.5 * max (abs ((yi - y) ./ (yi + y))(:)); if (err < tol || abs (err - err0) < tol/2) ## Either relative tolerance has been met OR ## algorithm has stopped making any reasonable progress per iteration. break; endif x0 = x; y0 = y; err0 = err; n = 2 * (n - 1) + 1; x = linspace (limits(1), limits(2), n)'; y = feval (fn, x); endwhile if (nargout == 2) X = x; Y = y; else if (isempty (hax)) hax = gca (); endif plot (hax, x, y, fmt); axis (hax, limits); if (isvector (y)) legend (hax, nam); else for i = 1:columns (y) nams{i} = sprintf ("%s(:,%i)", nam, i); endfor legend (hax, nams{:}); endif endif endfunction %!demo %! clf; %! fplot (@cos, [0, 2*pi]); %! title ('fplot() single function'); %!demo %! clf; %! fplot ('[cos(x), sin(x)]', [0, 2*pi]); %! title ('fplot() multiple functions'); %!demo %! clf; %! %% sinc function %! fh = @(x) sin (pi*x) ./ (pi*x); %! fplot (fh, [-5, 5]); %! title ('fplot() sinc function'); %!test %! [x, y] = fplot ("[cos(x), sin(x)]", [0, 2*pi]); %! assert (columns (y) == 2); %! assert (rows (x) == rows (y)); %! assert (y, [cos(x), sin(x)], -2e-3); %% Test input validation %!error fplot (1) %!error fplot (1,2,3,4,5,6) %!error <FN must be a function handle> fplot (1, [0 1]) %!error <LIMITS must be a real vector> fplot (@cos, [i, 2*i]) %!error <LIMITS must be a real vector with 2 or 4> fplot (@cos, [1]) %!error <LIMITS must be a real vector with 2 or 4> fplot (@cos, [1 2 3]) %!error <bad input in position 3> fplot (@cos,[-1,1], {1})