Mercurial > hg > octave-nkf
view scripts/plot/draw/surfnorm.m @ 19016:87c3848cf3c0
Fix bug when hggroup used with primitive graphic object (bug #42532).
* image.m, text.m, line.m, patch.m: __plt_get_axis_arg__ will return axis and
hggroup when 'parent' property is used. Select the first returned object
which is the axes, rather than passing both axis and hggroup to further plot
subroutines.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 10 Jun 2014 14:03:09 -0700 |
parents | d63878346099 |
children | 91f626902d17 446c46af4b42 |
line wrap: on
line source
## Copyright (C) 2007-2013 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} surfnorm (@var{x}, @var{y}, @var{z}) ## @deftypefnx {Function File} {} surfnorm (@var{z}) ## @deftypefnx {Function File} {[@var{nx}, @var{ny}, @var{nz}] =} surfnorm (@dots{}) ## @deftypefnx {Function File} {} surfnorm (@var{h}, @dots{}) ## Find the vectors normal to a meshgridded surface. The meshed gridded ## surface is defined by @var{x}, @var{y}, and @var{z}. If @var{x} and ## @var{y} are not defined, then it is assumed that they are given by ## ## @example ## @group ## [@var{x}, @var{y}] = meshgrid (1:rows (@var{z}), ## 1:columns (@var{z})); ## @end group ## @end example ## ## If no return arguments are requested, a surface plot with the normal ## vectors to the surface is plotted. Otherwise the components of the normal ## vectors at the mesh gridded points are returned in @var{nx}, @var{ny}, ## and @var{nz}. ## ## The normal vectors are calculated by taking the cross product of the ## diagonals of each of the quadrilaterals in the meshgrid to find the ## normal vectors of the centers of these quadrilaterals. The four nearest ## normal vectors to the meshgrid points are then averaged to obtain the ## normal to the surface at the meshgridded points. ## ## An example of the use of @code{surfnorm} is ## ## @example ## surfnorm (peaks (25)); ## @end example ## @seealso{surf, quiver3} ## @end deftypefn function [Nx, Ny, Nz] = surfnorm (varargin) [hax, varargin, nargin] = __plt_get_axis_arg__ ("surfnorm", varargin{:}); if (nargin != 1 && nargin != 3) print_usage (); endif if (nargin == 1) z = varargin{1}; [x, y] = meshgrid (1:rows (z), 1:columns (z)); ioff = 2; else x = varargin{1}; y = varargin{2}; z = varargin{3}; ioff = 4; endif if (!ismatrix (z) || isvector (z) || isscalar (z)) error ("surfnorm: Z argument must be a matrix"); endif if (! size_equal (x, y, z)) error ("surfnorm: X, Y, and Z must have the same dimensions"); endif ## Make life easier, and avoid having to do the extrapolation later, do ## a simpler linear extrapolation here. This is approximative, and works ## badly for closed surfaces like spheres. xx = [2 .* x(:,1) - x(:,2), x, 2 .* x(:,end) - x(:,end-1)]; xx = [2 .* xx(1,:) - xx(2,:); xx; 2 .* xx(end,:) - xx(end-1,:)]; yy = [2 .* y(:,1) - y(:,2), y, 2 .* y(:,end) - y(:,end-1)]; yy = [2 .* yy(1,:) - yy(2,:); yy; 2 .* yy(end,:) - yy(end-1,:)]; zz = [2 .* z(:,1) - z(:,2), z, 2 .* z(:,end) - z(:,end-1)]; zz = [2 .* zz(1,:) - zz(2,:); zz; 2 .* zz(end,:) - zz(end-1,:)]; u.x = xx(1:end-1,1:end-1) - xx(2:end,2:end); u.y = yy(1:end-1,1:end-1) - yy(2:end,2:end); u.z = zz(1:end-1,1:end-1) - zz(2:end,2:end); v.x = xx(1:end-1,2:end) - xx(2:end,1:end-1); v.y = yy(1:end-1,2:end) - yy(2:end,1:end-1); v.z = zz(1:end-1,2:end) - zz(2:end,1:end-1); c = cross ([u.x(:), u.y(:), u.z(:)], [v.x(:), v.y(:), v.z(:)]); w.x = reshape (c(:,1), size (u.x)); w.y = reshape (c(:,2), size (u.y)); w.z = reshape (c(:,3), size (u.z)); ## Create normal vectors as mesh vectices from normals at mesh centers nx = (w.x(1:end-1,1:end-1) + w.x(1:end-1,2:end) + w.x(2:end,1:end-1) + w.x(2:end,2:end)) ./ 4; ny = (w.y(1:end-1,1:end-1) + w.y(1:end-1,2:end) + w.y(2:end,1:end-1) + w.y(2:end,2:end)) ./ 4; nz = (w.z(1:end-1,1:end-1) + w.z(1:end-1,2:end) + w.z(2:end,1:end-1) + w.z(2:end,2:end)) ./ 4; ## Normalize the normal vectors len = sqrt (nx.^2 + ny.^2 + nz.^2); nx = nx ./ len; ny = ny ./ len; nz = nz ./ len; if (nargout == 0) oldfig = []; if (! isempty (hax)) oldfig = get (0, "currentfigure"); endif unwind_protect hax = newplot (hax); surf (x, y, z, varargin{ioff:end}); old_hold_state = get (hax, "nextplot"); unwind_protect set (hax, "nextplot", "add"); plot3 ([x(:)'; x(:).' + nx(:).' ; NaN(size(x(:).'))](:), [y(:)'; y(:).' + ny(:).' ; NaN(size(y(:).'))](:), [z(:)'; z(:).' + nz(:).' ; NaN(size(z(:).'))](:), varargin{ioff:end}); unwind_protect_cleanup set (hax, "nextplot", old_hold_state); end_unwind_protect unwind_protect_cleanup if (! isempty (oldfig)) set (0, "currentfigure", oldfig); endif end_unwind_protect else Nx = nx; Ny = ny; Nz = nz; endif endfunction %!demo %! clf; %! colormap ('default'); %! [x, y, z] = peaks (10); %! surfnorm (x, y, z); %!demo %! clf; %! colormap ('default'); %! surfnorm (peaks (10)); %!demo %! clf; %! colormap ('default'); %! surfnorm (peaks (32)); %! shading interp;