Mercurial > hg > octave-nkf
view scripts/plot/draw/tetramesh.m @ 19016:87c3848cf3c0
Fix bug when hggroup used with primitive graphic object (bug #42532).
* image.m, text.m, line.m, patch.m: __plt_get_axis_arg__ will return axis and
hggroup when 'parent' property is used. Select the first returned object
which is the axes, rather than passing both axis and hggroup to further plot
subroutines.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 10 Jun 2014 14:03:09 -0700 |
parents | d63878346099 |
children | ba167badef9f 446c46af4b42 |
line wrap: on
line source
## Copyright (C) 2012-2013 Martin Helm ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} tetramesh (@var{T}, @var{X}) ## @deftypefnx {Function File} {} tetramesh (@var{T}, @var{X}, @var{C}) ## @deftypefnx {Function File} {} tetramesh (@dots{}, @var{property}, @var{val}, @dots{}) ## @deftypefnx {Function File} {@var{h} =} tetramesh (@dots{}) ## Display the tetrahedrons defined in the m-by-4 matrix @var{T} as 3-D patches. ## ## @var{T} is typically the output of a Delaunay triangulation ## of a 3-D set of points. Every row of @var{T} contains four indices into ## the n-by-3 matrix @var{X} of the vertices of a tetrahedron. Every row in ## @var{X} represents one point in 3-D space. ## ## The vector @var{C} specifies the color of each tetrahedron as an index ## into the current colormap. The default value is 1:m where m is the number ## of tetrahedrons; the indices are scaled to map to the full range of the ## colormap. If there are more tetrahedrons than colors in the colormap then ## the values in @var{C} are cyclically repeated. ## ## Calling @code{tetramesh (@dots{}, "property", "value", @dots{})} passes all ## property/value pairs directly to the patch function as additional arguments. ## ## The optional return value @var{h} is a vector of patch handles where each ## handle represents one tetrahedron in the order given by @var{T}. ## A typical use case for @var{h} is to turn the respective patch ## @qcode{"visible"} property @qcode{"on"} or @qcode{"off"}. ## ## Type @code{demo tetramesh} to see examples on using @code{tetramesh}. ## @seealso{trimesh, delaunay3, delaunayn, patch} ## @end deftypefn ## Author: Martin Helm <martin@mhelm.de> function h = tetramesh (varargin) [reg, prop] = parseparams (varargin); if (length (reg) < 2 || length (reg) > 3) print_usage (); endif T = reg{1}; X = reg{2}; if (! ismatrix (T) || columns (T) != 4) error ("tetramesh: T must be an n-by-4 matrix"); elseif (! ismatrix (X) || columns (X) != 3) error ("tetramesh: X must be an n-by-3 matrix"); endif size_T = rows (T); cmap = colormap (); if (length (reg) < 3) size_cmap = rows (cmap); C = mod ((1:size_T)' - 1, size_cmap) + 1; if (size_T < size_cmap && size_T > 1) ## expand to the available range of colors C = floor ((C - 1) * (size_cmap - 1) / (size_T - 1)) + 1; endif else C = reg{3}; if (! isvector (C) || size_T != length (C)) error ("tetramesh: C must be a vector of the same length as T"); endif endif hax = newplot (); hvec = zeros (size_T, 1); if (strcmp (graphics_toolkit (), "gnuplot")) ## Tiny reduction of the tetrahedron size to help gnuplot by ## avoiding identical faces with different colors for i = 1:size_T [th, p] = __shrink__ ([1 2 3 4], X(T(i, :), :), 1 - 1e-7); hvec(i) = patch ("Faces", th, "Vertices", p, "FaceColor", cmap(C(i), :), "FaceAlpha", 0.9, prop{:}); endfor else ## FLTK does not support FaceAlpha. for i = 1:size_T th = [1 2 3; 2 3 4; 3 4 1; 4 1 2]; hvec(i) = patch ("Faces", th, "Vertices", X(T(i, :), :), "FaceColor", cmap(C(i), :), "FaceAlpha", 1.0, prop{:}); endfor endif if (! ishold ()) set (hax, "view", [-37.5, 30], "box", "off"); endif if (nargout > 0) h = hvec; endif endfunction ## shrink the tetrahedron relative to its center of gravity function [tri, p] = __shrink__ (T, X, sf) midpoint = repmat (sum (X(T, :), 1) / 4, 12, 1); p = [X([1 2 3], :); X([2 3 4], :); X([3 4 1], :); X([4 1 2], :)]; p = sf * (p - midpoint) + midpoint; tri = reshape (1:12, 3, 4)'; endfunction %!demo %! clf; %! d = [-1 1]; %! [x,y,z] = meshgrid (d, d, d); %! x = [x(:); 0]; %! y = [y(:); 0]; %! z = [z(:); 0]; %! tetra = delaunay3 (x, y, z); %! X = [x(:) y(:) z(:)]; %! colormap (jet (64)); %! h = tetramesh (tetra, X); %! set (h(1:2:end), 'Visible', 'off'); %! axis equal; %! view (30, 20); %! title ({'tetramesh() plot', ... %! 'colormap = jet (64), every other tetrahedron invisible'}); %!demo %! clf; %! d = [-1 1]; %! [x,y,z] = meshgrid (d, d, d); %! x = [x(:); 0]; %! y = [y(:); 0]; %! z = [z(:); 0]; %! tetra = delaunay3 (x, y, z); %! X = [x(:) y(:) z(:)]; %! colormap (gray (256)); %! tetramesh (tetra, X, 21:20:241, 'EdgeColor', 'w'); %! axis equal; %! view (30, 20); %! title ({'tetramesh() plot', ... %! 'colormap = gray (256) with white edges'});