Mercurial > hg > octave-nkf
view scripts/plot/draw/trisurf.m @ 19016:87c3848cf3c0
Fix bug when hggroup used with primitive graphic object (bug #42532).
* image.m, text.m, line.m, patch.m: __plt_get_axis_arg__ will return axis and
hggroup when 'parent' property is used. Select the first returned object
which is the axes, rather than passing both axis and hggroup to further plot
subroutines.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 10 Jun 2014 14:03:09 -0700 |
parents | d63878346099 |
children | 446c46af4b42 |
line wrap: on
line source
## Copyright (C) 2007-2013 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} trisurf (@var{tri}, @var{x}, @var{y}, @var{z}, @var{c}) ## @deftypefnx {Function File} {} trisurf (@var{tri}, @var{x}, @var{y}, @var{z}) ## @deftypefnx {Function File} {} trisurf (@dots{}, @var{prop}, @var{val}, @dots{}) ## @deftypefnx {Function File} {@var{h} =} trisurf (@dots{}) ## Plot a 3-D triangular surface. ## ## In contrast to @code{surf}, which plots a surface mesh using rectangles, ## @code{trisurf} plots the mesh using triangles. ## ## @var{tri} is typically the output of a Delaunay triangulation over the ## grid of @var{x}, @var{y}. Every row of @var{tri} represents one triangle ## and contains three indices into [@var{x}, @var{y}] which are the ## vertices of the triangles in the x-y plane. @var{z} determines the ## height above the plane of each vertex. ## ## The color of the trimesh is computed by linearly scaling the @var{z} values ## to fit the range of the current colormap. Use @code{caxis} and/or ## change the colormap to control the appearance. ## ## Optionally, the color of the mesh can be specified independently of @var{z} ## by supplying a color matrix, @var{c}. If @var{z} has N elements, then ## @var{c} should be an Nx1 vector for colormap data or an Nx3 matrix for ## RGB data. ## ## Any property/value pairs are passed directly to the underlying patch object. ## ## The optional return value @var{h} is a graphics handle to the created patch ## object. ## @seealso{surf, triplot, trimesh, delaunay, patch, shading} ## @end deftypefn function h = trisurf (tri, x, y, z, varargin) if (nargin < 4) print_usage (); endif if (nargin > 4 && isnumeric (varargin{1})) c = varargin{1}; varargin(1) = []; if (isvector (c)) if (numel (c) != numel (z)) error ("trisurf: C must have 'numel (Z)' elements"); endif c = c(:); elseif (rows (c) != numel (z) || columns (c) != 3) error ("trisurf: TrueColor C matrix must be 'numel (Z)' rows by 3 columns"); endif else c = z(:); endif ## FIXME: Is all this extra input parsing necessary? ## Is it for Matlab compatibility? if (! any (strcmpi (varargin, "FaceColor"))) nfc = numel (varargin) + 1; varargin(nfc+(0:1)) = {"FaceColor", "flat"}; else nfc = find (any (strcmpi (varargin, "FaceColor")), 1); endif if (! any (strcmpi (varargin, "EdgeColor")) && strcmpi (varargin{nfc+1}, "interp")) varargin(end+(1:2)) = {"EdgeColor", "none"}; endif hax = newplot (); htmp = patch ("Faces", tri, "Vertices", [x(:), y(:), z(:)], "FaceVertexCData", c, varargin{:}); if (! ishold ()) set (hax, "view", [-37.5, 30], "box", "off", "xgrid", "on", "ygrid", "on", "zgrid", "on"); endif if (nargout > 0) h = htmp; endif endfunction %!demo %! clf; %! colormap ('default'); %! N = 31; %! [x, y] = meshgrid (1:N); %! tri = delaunay (x(:), y(:)); %! z = peaks (N); %! h = trisurf (tri, x, y, z, 'facecolor', 'interp'); %! axis tight; %! zlim auto; %! title (sprintf ('facecolor = %s', get (h, 'facecolor'))); %!demo %! clf; %! colormap ('default'); %! N = 31; %! [x, y] = meshgrid (1:N); %! tri = delaunay (x(:), y(:)); %! z = peaks (N); %! h = trisurf (tri, x, y, z, 'facecolor', 'flat'); %! axis tight; %! zlim auto; %! title (sprintf ('facecolor = %s', get (h, 'facecolor'))); %!demo %! clf; %! colormap ('default'); %! old_state = rand ('state'); %! restore_state = onCleanup (@() rand ('state', old_state)); %! rand ('state', 10); %! N = 10; %! x = 3 - 6 * rand (N, N); %! y = 3 - 6 * rand (N, N); %! z = peaks (x, y); %! tri = delaunay (x(:), y(:)); %! trisurf (tri, x(:), y(:), z(:)); %!demo %! clf; %! colormap ('default'); %! x = rand (100, 1); %! y = rand (100, 1); %! z = x.^2 + y.^2; %! tri = delaunay (x, y); %! trisurf (tri, x, y, z); %!demo %! clf; %! colormap ('default'); %! x = rand (100, 1); %! y = rand (100, 1); %! z = x.^2 + y.^2; %! tri = delaunay (x, y); %! trisurf (tri, x, y, z, 'facecolor', 'interp'); %!demo %! clf; %! colormap ('default'); %! x = rand (100, 1); %! y = rand (100, 1); %! z = x.^2 + y.^2; %! tri = delaunay (x, y); %! trisurf (tri, x, y, z, 'facecolor', 'interp', 'edgecolor', 'k'); %% Test input validation %!error trisurf () %!error trisurf (1) %!error trisurf (1,2) %!error trisurf (1,2,3) %!error <C must have 'numel \(Z\)' elements> trisurf (1,2,3,4,[5 6]) %!error <C must have 'numel \(Z\)' elements> trisurf (1,2,3,4,[5 6]') %!error <TrueColor C matrix must> trisurf ([1;1],[2;2],[3;3],[4;4],zeros(3,3)) %!error <TrueColor C matrix must> trisurf ([1;1],[2;2],[3;3],[4;4],zeros(2,2))