Mercurial > hg > octave-nkf
view scripts/polynomial/polyeig.m @ 19830:884e0c55d92c
Fix complex compare operation for issorted (bug #44071).
* Array-C.cc (nan_ascending_compare, nan_descending_compare): Fix typo where
comparison was made between x and x rather than between x and y.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 26 Jan 2015 15:32:49 -0800 |
parents | be7ac98fab43 |
children | 4197fc428c7d |
line wrap: on
line source
## Copyright (C) 2012-2013 Fotios Kasolis ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{z} =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl}) ## @deftypefnx {Function File} {[@var{v}, @var{z}] =} polyeig (@var{C0}, @var{C1}, @dots{}, @var{Cl}) ## ## Solve the polynomial eigenvalue problem of degree @var{l}. ## ## Given an @var{n*n} matrix polynomial ## @code{@var{C}(s) = @var{C0} + @var{C1} s + @dots{} + @var{Cl} s^l} ## polyeig solves the eigenvalue problem ## @code{(@var{C0} + @var{C1} + @dots{} + @var{Cl})v = 0}. ## ## Note that the eigenvalues @var{z} are the zeros of the matrix polynomial. ## @var{z} is a row vector with @var{n*l} elements. @var{v} is a matrix ## (@var{n} x @var{n}*@var{l}) with columns that correspond to the ## eigenvectors. ## ## @seealso{eig, eigs, compan} ## @end deftypefn ## Author: Fotios Kasolis function [z, v] = polyeig (varargin) if (nargin < 1 || nargout > 2) print_usage (); endif nin = numel (varargin); n = rows (varargin{1}); for i = 1 : nin if (! issquare (varargin{i})) error ("polyeig: coefficients must be square matrices"); endif if (rows (varargin{i}) != n) error ("polyeig: coefficients must have the same dimensions"); endif endfor ## matrix polynomial degree l = nin - 1; ## form needed matrices C = [ zeros(n * (l - 1), n), eye(n * (l - 1)); -cell2mat(varargin(1:end-1)) ]; D = [ eye(n * (l - 1)), zeros(n * (l - 1), n); zeros(n, n * (l - 1)), varargin{end} ]; ## solve generalized eigenvalue problem if (nargout == 2) [z, v] = eig (C, D); v = diag (v); ## return n-element eigenvectors normalized so that the infinity-norm = 1 z = z(1:n,:); ## max() takes the abs if complex: t = max (z); z /= diag (t); else z = eig (C, D); endif endfunction %!shared C0, C1 %! C0 = [8, 0; 0, 4]; C1 = [1, 0; 0, 1]; %!test %! z = polyeig (C0, C1); %! assert (z, [-8; -4]); %!test %! [v,z] = polyeig (C0, C1); %! assert (z, [-8; -4]); %! z = diag (z); %! d = C0*v + C1*v*z; %! assert (norm (d), 0.0); %% Input validation tests %!error polyeig () %!error [a,b,c] = polyeig (1) %!error <coefficients must be square matrices> polyeig (ones (3,2)) %!error <coefficients must have the same dimensions> polyeig (ones (3,3), ones (2,2))