Mercurial > hg > octave-nkf
view src/ov-range.cc @ 7301:89d546610556 ss-2-9-19
[project @ 2007-12-12 03:56:59 by jwe]
author | jwe |
---|---|
date | Wed, 12 Dec 2007 03:57:00 +0000 |
parents | a1dbe9d80eee |
children | 82be108cc558 278afaecddd4 |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1998, 2000, 2002, 2003, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "lo-ieee.h" #include "lo-utils.h" #include "gripes.h" #include "ops.h" #include "oct-obj.h" #include "ov-range.h" #include "ov-re-mat.h" #include "ov-scalar.h" #include "pr-output.h" #include "byte-swap.h" #include "ls-hdf5.h" #include "ls-utils.h" DEFINE_OCTAVE_ALLOCATOR (octave_range); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_range, "range", "double"); static octave_base_value * default_numeric_conversion_function (const octave_base_value& a) { CAST_CONV_ARG (const octave_range&); return new octave_matrix (v.matrix_value ()); } octave_base_value::type_conv_fcn octave_range::numeric_conversion_function (void) const { return default_numeric_conversion_function; } octave_base_value * octave_range::try_narrowing_conversion (void) { octave_base_value *retval = 0; switch (range.nelem ()) { case 1: retval = new octave_scalar (range.base ()); break; case 0: retval = new octave_matrix (Matrix (1, 0)); break; default: break; } return retval; } octave_value octave_range::subsref (const std::string& type, const std::list<octave_value_list>& idx) { octave_value retval; switch (type[0]) { case '(': retval = do_index_op (idx.front ()); break; case '{': case '.': { std::string nm = type_name (); error ("%s cannot be indexed with %c", nm.c_str (), type[0]); } break; default: panic_impossible (); } return retval.next_subsref (type, idx); } octave_value octave_range::do_index_op (const octave_value_list& idx, bool resize_ok) { // FIXME -- this doesn't solve the problem of // // a = 1:5; a(1, 1, 1) // // and similar constructions. Hmm... // FIXME -- using this constructor avoids possibly narrowing // the range to a scalar value. Need a better solution to this // problem. octave_value tmp (new octave_matrix (range.matrix_value ())); return tmp.do_index_op (idx, resize_ok); } double octave_range::double_value (bool) const { double retval = lo_ieee_nan_value (); octave_idx_type nel = range.nelem (); if (nel > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "range", "real scalar"); retval = range.base (); } else gripe_invalid_conversion ("range", "real scalar"); return retval; } octave_value octave_range::all (int dim) const { // FIXME -- this is a potential waste of memory. Matrix m = range.matrix_value (); return m.all (dim); } octave_value octave_range::any (int dim) const { // FIXME -- this is a potential waste of memory. Matrix m = range.matrix_value (); return m.any (dim); } bool octave_range::is_true (void) const { bool retval = false; if (range.nelem () != 0) { // FIXME -- this is a potential waste of memory. Matrix m ((range.matrix_value () . all ()) . all ()); retval = (m.rows () == 1 && m.columns () == 1 && m (0, 0) != 0.0); } return retval; } Complex octave_range::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); octave_idx_type nel = range.nelem (); if (nel > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "range", "complex scalar"); retval = range.base (); } else gripe_invalid_conversion ("range", "complex scalar"); return retval; } octave_value octave_range::resize (const dim_vector& dv, bool fill) const { NDArray retval = array_value (); if (fill) retval.resize (dv, NDArray::resize_fill_value()); else retval.resize (dv); return retval; } octave_value octave_range::convert_to_str_internal (bool pad, bool force, char type) const { octave_value tmp (range.matrix_value ()); return tmp.convert_to_str (pad, force, type); } void octave_range::print (std::ostream& os, bool pr_as_read_syntax) const { print_raw (os, pr_as_read_syntax); newline (os); } void octave_range::print_raw (std::ostream& os, bool pr_as_read_syntax) const { octave_print_internal (os, range, pr_as_read_syntax, current_print_indent_level ()); } bool octave_range::print_name_tag (std::ostream& os, const std::string& name) const { bool retval = false; octave_idx_type n = range.nelem (); indent (os); if (n == 0 || n == 1) os << name << " = "; else { os << name << " ="; newline (os); newline (os); retval = true; } return retval; } // Skip white space and comments on stream IS. static void skip_comments (std::istream& is) { char c = '\0'; while (is.get (c)) { if (c == ' ' || c == '\t' || c == '\n') ; // Skip whitespace on way to beginning of next line. else break; } for (;;) { if (is && (c == '%' || c == '#')) while (is.get (c) && c != '\n') ; // Skip to beginning of next line, ignoring everything. else break; } } bool octave_range::save_ascii (std::ostream& os) { Range r = range_value (); double base = r.base (); double limit = r.limit (); double inc = r.inc (); os << "# base, limit, increment\n"; octave_write_double (os, base); os << " "; octave_write_double (os, limit); os << " "; octave_write_double (os, inc); os << "\n"; return true; } bool octave_range::load_ascii (std::istream& is) { // # base, limit, range comment added by save (). skip_comments (is); is >> range; if (!is) { error ("load: failed to load range constant"); return false; } return true; } bool octave_range::save_binary (std::ostream& os, bool& /* save_as_floats */) { char tmp = LS_DOUBLE; os.write (reinterpret_cast<char *> (&tmp), 1); Range r = range_value (); double bas = r.base (); double lim = r.limit (); double inc = r.inc (); os.write (reinterpret_cast<char *> (&bas), 8); os.write (reinterpret_cast<char *> (&lim), 8); os.write (reinterpret_cast<char *> (&inc), 8); return true; } bool octave_range::load_binary (std::istream& is, bool swap, oct_mach_info::float_format /* fmt */) { char tmp; if (! is.read (reinterpret_cast<char *> (&tmp), 1)) return false; double bas, lim, inc; if (! is.read (reinterpret_cast<char *> (&bas), 8)) return false; if (swap) swap_bytes<8> (&bas); if (! is.read (reinterpret_cast<char *> (&lim), 8)) return false; if (swap) swap_bytes<8> (&lim); if (! is.read (reinterpret_cast<char *> (&inc), 8)) return false; if (swap) swap_bytes<8> (&inc); Range r (bas, lim, inc); range = r; return true; } #if defined (HAVE_HDF5) // The following subroutines creates an HDF5 representation of the way // we will store Octave range types (triplets of floating-point numbers). // NUM_TYPE is the HDF5 numeric type to use for storage (e.g. // H5T_NATIVE_DOUBLE to save as 'double'). Note that any necessary // conversions are handled automatically by HDF5. static hid_t hdf5_make_range_type (hid_t num_type) { hid_t type_id = H5Tcreate (H5T_COMPOUND, sizeof (double) * 3); H5Tinsert (type_id, "base", 0 * sizeof (double), num_type); H5Tinsert (type_id, "limit", 1 * sizeof (double), num_type); H5Tinsert (type_id, "increment", 2 * sizeof (double), num_type); return type_id; } bool octave_range::save_hdf5 (hid_t loc_id, const char *name, bool /* save_as_floats */) { hsize_t dimens[3]; hid_t space_hid = -1, type_hid = -1, data_hid = -1; bool retval = true; space_hid = H5Screate_simple (0, dimens, 0); if (space_hid < 0) return false; type_hid = hdf5_make_range_type (H5T_NATIVE_DOUBLE); if (type_hid < 0) { H5Sclose (space_hid); return false; } data_hid = H5Dcreate (loc_id, name, type_hid, space_hid, H5P_DEFAULT); if (data_hid < 0) { H5Sclose (space_hid); H5Tclose (type_hid); return false; } Range r = range_value (); double range_vals[3]; range_vals[0] = r.base (); range_vals[1] = r.limit (); range_vals[2] = r.inc (); retval = H5Dwrite (data_hid, type_hid, H5S_ALL, H5S_ALL, H5P_DEFAULT, range_vals) >= 0; H5Dclose (data_hid); H5Tclose (type_hid); H5Sclose (space_hid); return retval; } bool octave_range::load_hdf5 (hid_t loc_id, const char *name, bool /* have_h5giterate_bug */) { bool retval = false; hid_t data_hid = H5Dopen (loc_id, name); hid_t type_hid = H5Dget_type (data_hid); hid_t range_type = hdf5_make_range_type (H5T_NATIVE_DOUBLE); if (! hdf5_types_compatible (type_hid, range_type)) { H5Tclose (range_type); H5Dclose (data_hid); return false; } hid_t space_hid = H5Dget_space (data_hid); hsize_t rank = H5Sget_simple_extent_ndims (space_hid); if (rank != 0) { H5Tclose (range_type); H5Sclose (space_hid); H5Dclose (data_hid); return false; } double rangevals[3]; if (H5Dread (data_hid, range_type, H5S_ALL, H5S_ALL, H5P_DEFAULT, rangevals) >= 0) { retval = true; Range r (rangevals[0], rangevals[1], rangevals[2]); range = r; } H5Tclose (range_type); H5Sclose (space_hid); H5Dclose (data_hid); return retval; } #endif mxArray * octave_range::as_mxArray (void) const { mxArray *retval = new mxArray (mxDOUBLE_CLASS, dims (), mxREAL); double *pr = static_cast<double *> (retval->get_data ()); mwSize nel = numel (); Matrix m = matrix_value (); const double *p = m.data (); for (mwSize i = 0; i < nel; i++) pr[i] = p[i]; return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */