Mercurial > hg > octave-nkf
view src/interp-core/jit-ir.h @ 15096:909a2797935b
maint: Move interp source code without DEFUNs to interp-core/ dir.
* src/Makefile.am, interpfcn/module.mk, operators/module.mk,
parse-tree/module.mk: Update build system by moving source lists and rules
to the correct directory.
* Cell.cc, Cell.h, c-file-ptr-stream.cc, c-file-ptr-stream.h, comment-list.cc,
comment-list.h, cutils.c, cutils.h, defun-dld.h, defun-int.h, display.cc,
display.h, dynamic-ld.cc, dynamic-ld.h, gl-render.cc, gl-render.h,
gl2ps-renderer.cc, gl2ps-renderer.h, gl2ps.c, gl2ps.h, gripes.cc, gripes.h,
jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h,
ls-ascii-helper.cc, ls-ascii-helper.h, ls-hdf5.cc, ls-hdf5.h, ls-mat-ascii.cc,
ls-mat-ascii.h, ls-mat4.cc, ls-mat4.h, ls-mat5.cc, ls-mat5.h, ls-oct-binary.cc,
ls-oct-binary.h, ls-utils.cc, ls-utils.h, matherr.c, mex.cc, mex.h, mexproto.h,
module.mk, mxarray.in.h, oct-errno.h, oct-errno.in.cc, oct-fstrm.cc,
oct-fstrm.h, oct-hdf5.h, oct-iostrm.cc, oct-iostrm.h, oct-lvalue.cc,
oct-lvalue.h, oct-map.cc, oct-map.h, oct-obj.cc, oct-obj.h, oct-prcstrm.cc,
oct-prcstrm.h, oct-procbuf.cc, oct-procbuf.h, oct-stdstrm.h, oct-stream.cc,
oct-stream.h, oct-strstrm.cc, oct-strstrm.h, oct.h, procstream.cc,
procstream.h, pt-jit.cc, pt-jit.h, siglist.c, siglist.h, sparse-xdiv.cc,
sparse-xdiv.h, sparse-xpow.cc, sparse-xpow.h, txt-eng-ft.cc, txt-eng-ft.h,
txt-eng.h, unwind-prot.cc, unwind-prot.h, xdiv.cc, xdiv.h, xgl2ps.c, xnorm.cc,
xnorm.h, xpow.cc, xpow.h, zfstream.cc, zfstream.h: Move from src/ dir to
src/interp-core dir.
* ops.h: Move to operators/ directory.
* octave.gperf, token.cc, token.h: Move to parse-tree directory.
author | Rik <rik@octave.org> |
---|---|
date | Fri, 03 Aug 2012 13:18:21 -0700 |
parents | src/jit-ir.h@df4538e3b50b |
children | d29f2583cf7b |
line wrap: on
line source
/* Copyright (C) 2012 Max Brister <max@2bass.com> This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #if !defined (octave_jit_ir_h) #define octave_jit_ir_h 1 #ifdef HAVE_LLVM #include <list> #include <stack> #include <set> #include "jit-typeinfo.h" // The low level octave jit ir // this ir is close to llvm, but contains information for doing type inference. // We convert the octave parse tree to this IR directly. #define JIT_VISIT_IR_NOTEMPLATE \ JIT_METH(block); \ JIT_METH(branch); \ JIT_METH(cond_branch); \ JIT_METH(call); \ JIT_METH(extract_argument); \ JIT_METH(store_argument); \ JIT_METH(phi); \ JIT_METH(variable); \ JIT_METH(error_check); \ JIT_METH(assign) \ JIT_METH(argument) \ JIT_METH(magic_end) #define JIT_VISIT_IR_CONST \ JIT_METH(const_bool); \ JIT_METH(const_scalar); \ JIT_METH(const_complex); \ JIT_METH(const_index); \ JIT_METH(const_string); \ JIT_METH(const_range) #define JIT_VISIT_IR_CLASSES \ JIT_VISIT_IR_NOTEMPLATE \ JIT_VISIT_IR_CONST // forward declare all ir classes #define JIT_METH(cname) \ class jit_ ## cname; JIT_VISIT_IR_NOTEMPLATE #undef JIT_METH class jit_convert; // ABCs which aren't included in JIT_VISIT_IR_ALL class jit_instruction; class jit_terminator; template <typename T, jit_type *(*EXTRACT_T)(void), typename PASS_T = T, bool QUOTE=false> class jit_const; typedef jit_const<bool, jit_typeinfo::get_bool> jit_const_bool; typedef jit_const<double, jit_typeinfo::get_scalar> jit_const_scalar; typedef jit_const<Complex, jit_typeinfo::get_complex> jit_const_complex; typedef jit_const<octave_idx_type, jit_typeinfo::get_index> jit_const_index; typedef jit_const<std::string, jit_typeinfo::get_string, const std::string&, true> jit_const_string; typedef jit_const<jit_range, jit_typeinfo::get_range, const jit_range&> jit_const_range; class jit_ir_walker; class jit_use; class jit_value : public jit_internal_list<jit_value, jit_use> { public: jit_value (void) : llvm_value (0), ty (0), mlast_use (0), min_worklist (false) {} virtual ~jit_value (void); bool in_worklist (void) const { return min_worklist; } void stash_in_worklist (bool ain_worklist) { min_worklist = ain_worklist; } // The block of the first use which is not a jit_error_check // So this is not necessarily first_use ()->parent (). jit_block *first_use_block (void); // replace all uses with virtual void replace_with (jit_value *value); jit_type *type (void) const { return ty; } llvm::Type *type_llvm (void) const { return ty ? ty->to_llvm () : 0; } const std::string& type_name (void) const { return ty->name (); } void stash_type (jit_type *new_ty) { ty = new_ty; } std::string print_string (void) { std::stringstream ss; print (ss); return ss.str (); } jit_instruction *last_use (void) const { return mlast_use; } void stash_last_use (jit_instruction *alast_use) { mlast_use = alast_use; } virtual bool needs_release (void) const { return false; } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const = 0; virtual std::ostream& short_print (std::ostream& os) const { return print (os); } virtual void accept (jit_ir_walker& walker) = 0; bool has_llvm (void) const { return llvm_value; } llvm::Value *to_llvm (void) const { assert (llvm_value); return llvm_value; } void stash_llvm (llvm::Value *compiled) { llvm_value = compiled; } protected: std::ostream& print_indent (std::ostream& os, size_t indent = 0) const { for (size_t i = 0; i < indent * 8; ++i) os << " "; return os; } llvm::Value *llvm_value; private: jit_type *ty; jit_instruction *mlast_use; bool min_worklist; }; std::ostream& operator<< (std::ostream& os, const jit_value& value); std::ostream& jit_print (std::ostream& os, jit_value *avalue); class jit_use : public jit_internal_node<jit_value, jit_use> { public: jit_use (void) : muser (0), mindex (0) {} // we should really have a move operator, but not until c++11 :( jit_use (const jit_use& use) : muser (0), mindex (0) { *this = use; } jit_use& operator= (const jit_use& use) { stash_value (use.value (), use.user (), use.index ()); return *this; } size_t index (void) const { return mindex; } jit_instruction *user (void) const { return muser; } jit_block *user_parent (void) const; std::list<jit_block *> user_parent_location (void) const; void stash_value (jit_value *avalue, jit_instruction *auser = 0, size_t aindex = -1) { jit_internal_node::stash_value (avalue); mindex = aindex; muser = auser; } private: jit_instruction *muser; size_t mindex; }; class jit_instruction : public jit_value { public: // FIXME: this code could be so much pretier with varadic templates... jit_instruction (void) : mid (next_id ()), mparent (0) {} jit_instruction (size_t nargs) : mid (next_id ()), mparent (0) { already_infered.reserve (nargs); marguments.reserve (nargs); } #define STASH_ARG(i) stash_argument (i, arg ## i); #define JIT_INSTRUCTION_CTOR(N) \ jit_instruction (OCT_MAKE_DECL_LIST (jit_value *, arg, N)) \ : already_infered (N), marguments (N), mid (next_id ()), mparent (0) \ { \ OCT_ITERATE_MACRO (STASH_ARG, N); \ } JIT_INSTRUCTION_CTOR(1) JIT_INSTRUCTION_CTOR(2) JIT_INSTRUCTION_CTOR(3) JIT_INSTRUCTION_CTOR(4) #undef STASH_ARG #undef JIT_INSTRUCTION_CTOR jit_instruction (const std::vector<jit_value *>& aarguments) : already_infered (aarguments.size ()), marguments (aarguments.size ()), mid (next_id ()), mparent (0) { for (size_t i = 0; i < aarguments.size (); ++i) stash_argument (i, aarguments[i]); } static void reset_ids (void) { next_id (true); } jit_value *argument (size_t i) const { return marguments[i].value (); } llvm::Value *argument_llvm (size_t i) const { assert (argument (i)); return argument (i)->to_llvm (); } jit_type *argument_type (size_t i) const { return argument (i)->type (); } llvm::Type *argument_type_llvm (size_t i) const { assert (argument (i)); return argument_type (i)->to_llvm (); } std::ostream& print_argument (std::ostream& os, size_t i) const { if (argument (i)) return argument (i)->short_print (os); else return os << "NULL"; } void stash_argument (size_t i, jit_value *arg) { marguments[i].stash_value (arg, this, i); } void push_argument (jit_value *arg) { marguments.push_back (jit_use ()); stash_argument (marguments.size () - 1, arg); already_infered.push_back (0); } size_t argument_count (void) const { return marguments.size (); } void resize_arguments (size_t acount, jit_value *adefault = 0) { size_t old = marguments.size (); marguments.resize (acount); already_infered.resize (acount); if (adefault) for (size_t i = old; i < acount; ++i) stash_argument (i, adefault); } const std::vector<jit_use>& arguments (void) const { return marguments; } // argument types which have been infered already const std::vector<jit_type *>& argument_types (void) const { return already_infered; } virtual void push_variable (void) {} virtual void pop_variable (void) {} virtual void construct_ssa (void) { do_construct_ssa (0, argument_count ()); } virtual bool infer (void) { return false; } void remove (void); virtual std::ostream& short_print (std::ostream& os) const; jit_block *parent (void) const { return mparent; } std::list<jit_instruction *>::iterator location (void) const { return mlocation; } llvm::BasicBlock *parent_llvm (void) const; void stash_parent (jit_block *aparent, std::list<jit_instruction *>::iterator alocation) { mparent = aparent; mlocation = alocation; } size_t id (void) const { return mid; } protected: // Do SSA replacement on arguments in [start, end) void do_construct_ssa (size_t start, size_t end); std::vector<jit_type *> already_infered; private: static size_t next_id (bool reset = false) { static size_t ret = 0; if (reset) return ret = 0; return ret++; } std::vector<jit_use> marguments; size_t mid; jit_block *mparent; std::list<jit_instruction *>::iterator mlocation; }; // defnie accept methods for subclasses #define JIT_VALUE_ACCEPT \ virtual void accept (jit_ir_walker& walker); // for use as a dummy argument during conversion to LLVM class jit_argument : public jit_value { public: jit_argument (jit_type *atype, llvm::Value *avalue) { stash_type (atype); stash_llvm (avalue); } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent); return jit_print (os, type ()) << ": DUMMY"; } JIT_VALUE_ACCEPT; }; template <typename T, jit_type *(*EXTRACT_T)(void), typename PASS_T, bool QUOTE> class jit_const : public jit_value { public: typedef PASS_T pass_t; jit_const (PASS_T avalue) : mvalue (avalue) { stash_type (EXTRACT_T ()); } PASS_T value (void) const { return mvalue; } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent); jit_print (os, type ()) << ": "; if (QUOTE) os << "\""; os << mvalue; if (QUOTE) os << "\""; return os; } JIT_VALUE_ACCEPT; private: T mvalue; }; class jit_phi_incomming; class jit_block : public jit_value, public jit_internal_list<jit_block, jit_phi_incomming> { typedef jit_internal_list<jit_block, jit_phi_incomming> ILIST_T; public: typedef std::list<jit_instruction *> instruction_list; typedef instruction_list::iterator iterator; typedef instruction_list::const_iterator const_iterator; typedef std::set<jit_block *> df_set; typedef df_set::const_iterator df_iterator; static const size_t NO_ID = static_cast<size_t> (-1); jit_block (const std::string& aname, size_t avisit_count = 0) : mvisit_count (avisit_count), mid (NO_ID), idom (0), mname (aname), malive (false) {} virtual void replace_with (jit_value *value); void replace_in_phi (jit_block *ablock, jit_block *with); // we have a new internal list, but we want to stay compatable with jit_value jit_use *first_use (void) const { return jit_value::first_use (); } size_t use_count (void) const { return jit_value::use_count (); } // if a block is alive, then it might be visited during execution bool alive (void) const { return malive; } void mark_alive (void) { malive = true; } // If we can merge with a successor, do so and return the now empty block jit_block *maybe_merge (); // merge another block into this block, leaving the merge block empty void merge (jit_block& merge); const std::string& name (void) const { return mname; } jit_instruction *prepend (jit_instruction *instr); jit_instruction *prepend_after_phi (jit_instruction *instr); template <typename T> T *append (T *instr) { internal_append (instr); return instr; } jit_instruction *insert_before (iterator loc, jit_instruction *instr); jit_instruction *insert_before (jit_instruction *loc, jit_instruction *instr) { return insert_before (loc->location (), instr); } jit_instruction *insert_after (iterator loc, jit_instruction *instr); jit_instruction *insert_after (jit_instruction *loc, jit_instruction *instr) { return insert_after (loc->location (), instr); } iterator remove (iterator iter) { jit_instruction *instr = *iter; iter = instructions.erase (iter); instr->stash_parent (0, instructions.end ()); return iter; } jit_terminator *terminator (void) const; // is the jump from pred alive? bool branch_alive (jit_block *asucc) const; jit_block *successor (size_t i) const; size_t successor_count (void) const; iterator begin (void) { return instructions.begin (); } const_iterator begin (void) const { return instructions.begin (); } iterator end (void) { return instructions.end (); } const_iterator end (void) const { return instructions.end (); } iterator phi_begin (void); iterator phi_end (void); iterator nonphi_begin (void); // must label before id is valid size_t id (void) const { return mid; } // dominance frontier const df_set& df (void) const { return mdf; } df_iterator df_begin (void) const { return mdf.begin (); } df_iterator df_end (void) const { return mdf.end (); } // label with a RPO walk void label (void) { size_t number = 0; label (mvisit_count, number); } void label (size_t avisit_count, size_t& number) { if (visited (avisit_count)) return; for (jit_use *use = first_use (); use; use = use->next ()) { jit_block *pred = use->user_parent (); pred->label (avisit_count, number); } mid = number++; } // See for idom computation algorithm // Cooper, Keith D.; Harvey, Timothy J; and Kennedy, Ken (2001). // "A Simple, Fast Dominance Algorithm" void compute_idom (jit_block *entry_block) { bool changed; entry_block->idom = entry_block; do changed = update_idom (mvisit_count); while (changed); } // compute dominance frontier void compute_df (void) { compute_df (mvisit_count); } void create_dom_tree (void) { create_dom_tree (mvisit_count); } jit_block *dom_successor (size_t idx) const { return dom_succ[idx]; } size_t dom_successor_count (void) const { return dom_succ.size (); } // call pop_varaible on all instructions void pop_all (void); virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent); short_print (os) << ": %pred = "; for (jit_use *use = first_use (); use; use = use->next ()) { jit_block *pred = use->user_parent (); os << *pred; if (use->next ()) os << ", "; } os << std::endl; for (const_iterator iter = begin (); iter != end (); ++iter) { jit_instruction *instr = *iter; instr->print (os, indent + 1) << std::endl; } return os; } // ... jit_block *maybe_split (jit_convert& convert, jit_block *asuccessor); jit_block *maybe_split (jit_convert& convert, jit_block& asuccessor) { return maybe_split (convert, &asuccessor); } // print dominator infomration std::ostream& print_dom (std::ostream& os) const; virtual std::ostream& short_print (std::ostream& os) const { os << mname; if (mid != NO_ID) os << mid; return os; } llvm::BasicBlock *to_llvm (void) const; std::list<jit_block *>::iterator location (void) const { return mlocation; } void stash_location (std::list<jit_block *>::iterator alocation) { mlocation = alocation; } // used to prevent visiting the same node twice in the graph size_t visit_count (void) const { return mvisit_count; } // check if this node has been visited yet at the given visit count. If we // have not been visited yet, mark us as visited. bool visited (size_t avisit_count) { if (mvisit_count <= avisit_count) { mvisit_count = avisit_count + 1; return false; } return true; } JIT_VALUE_ACCEPT; private: void internal_append (jit_instruction *instr); void compute_df (size_t avisit_count); bool update_idom (size_t avisit_count); void create_dom_tree (size_t avisit_count); static jit_block *idom_intersect (jit_block *i, jit_block *j); size_t mvisit_count; size_t mid; jit_block *idom; df_set mdf; std::vector<jit_block *> dom_succ; std::string mname; instruction_list instructions; bool malive; std::list<jit_block *>::iterator mlocation; }; // keeps track of phi functions that use a block on incomming edges class jit_phi_incomming : public jit_internal_node<jit_block, jit_phi_incomming> { public: jit_phi_incomming (void) : muser (0) {} jit_phi_incomming (jit_phi *auser) : muser (auser) {} jit_phi_incomming (const jit_phi_incomming& use) : jit_internal_node () { *this = use; } jit_phi_incomming& operator= (const jit_phi_incomming& use) { stash_value (use.value ()); muser = use.muser; return *this; } jit_phi *user (void) const { return muser; } jit_block *user_parent (void) const; private: jit_phi *muser; }; // A non-ssa variable class jit_variable : public jit_value { public: jit_variable (const std::string& aname) : mname (aname), mlast_use (0) {} const std::string &name (void) const { return mname; } // manipulate the value_stack, for use during SSA construction. The top of the // value stack represents the current value for this variable bool has_top (void) const { return ! value_stack.empty (); } jit_value *top (void) const { return value_stack.top (); } void push (jit_instruction *v) { value_stack.push (v); mlast_use = v; } void pop (void) { value_stack.pop (); } jit_instruction *last_use (void) const { return mlast_use; } void stash_last_use (jit_instruction *instr) { mlast_use = instr; } // blocks in which we are used void use_blocks (jit_block::df_set& result) { jit_use *use = first_use (); while (use) { result.insert (use->user_parent ()); use = use->next (); } } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { return print_indent (os, indent) << mname; } JIT_VALUE_ACCEPT; private: std::string mname; std::stack<jit_value *> value_stack; jit_instruction *mlast_use; }; class jit_assign_base : public jit_instruction { public: jit_assign_base (jit_variable *adest) : jit_instruction (), mdest (adest) {} jit_assign_base (jit_variable *adest, size_t npred) : jit_instruction (npred), mdest (adest) {} jit_assign_base (jit_variable *adest, jit_value *arg0, jit_value *arg1) : jit_instruction (arg0, arg1), mdest (adest) {} jit_variable *dest (void) const { return mdest; } virtual void push_variable (void) { mdest->push (this); } virtual void pop_variable (void) { mdest->pop (); } virtual std::ostream& short_print (std::ostream& os) const { if (type ()) jit_print (os, type ()) << ": "; dest ()->short_print (os); return os << "#" << id (); } private: jit_variable *mdest; }; class jit_assign : public jit_assign_base { public: jit_assign (jit_variable *adest, jit_value *asrc) : jit_assign_base (adest, adest, asrc), martificial (false) {} jit_value *overwrite (void) const { return argument (0); } jit_value *src (void) const { return argument (1); } // variables don't get modified in an SSA, but COW requires we modify // variables. An artificial assign is for when a variable gets modified. We // need an assign in the SSA, but the reference counts shouldn't be updated. bool artificial (void) const { return martificial; } void mark_artificial (void) { martificial = true; } virtual bool infer (void) { jit_type *stype = src ()->type (); if (stype != type()) { stash_type (stype); return true; } return false; } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent) << *this << " = " << *src (); if (artificial ()) os << " [artificial]"; return os; } JIT_VALUE_ACCEPT; private: bool martificial; }; class jit_phi : public jit_assign_base { public: jit_phi (jit_variable *adest, size_t npred) : jit_assign_base (adest, npred) { mincomming.reserve (npred); } // removes arguments form dead incomming jumps bool prune (void); void add_incomming (jit_block *from, jit_value *value) { push_argument (value); mincomming.push_back (jit_phi_incomming (this)); mincomming[mincomming.size () - 1].stash_value (from); } jit_block *incomming (size_t i) const { return mincomming[i].value (); } llvm::BasicBlock *incomming_llvm (size_t i) const { return incomming (i)->to_llvm (); } virtual void construct_ssa (void) {} virtual bool infer (void); virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { std::stringstream ss; print_indent (ss, indent); short_print (ss) << " phi "; std::string ss_str = ss.str (); std::string indent_str (ss_str.size (), ' '); os << ss_str; for (size_t i = 0; i < argument_count (); ++i) { if (i > 0) os << indent_str; os << "| "; os << *incomming (i) << " -> "; os << *argument (i); if (i + 1 < argument_count ()) os << std::endl; } return os; } llvm::PHINode *to_llvm (void) const; JIT_VALUE_ACCEPT; private: std::vector<jit_phi_incomming> mincomming; }; class jit_terminator : public jit_instruction { public: #define JIT_TERMINATOR_CONST(N) \ jit_terminator (size_t asuccessor_count, \ OCT_MAKE_DECL_LIST (jit_value *, arg, N)) \ : jit_instruction (OCT_MAKE_ARG_LIST (arg, N)), \ malive (asuccessor_count, false) {} JIT_TERMINATOR_CONST (1) JIT_TERMINATOR_CONST (2) JIT_TERMINATOR_CONST (3) #undef JIT_TERMINATOR_CONST jit_block *successor (size_t idx = 0) const { return static_cast<jit_block *> (argument (idx)); } llvm::BasicBlock *successor_llvm (size_t idx = 0) const { return successor (idx)->to_llvm (); } size_t successor_index (const jit_block *asuccessor) const; std::ostream& print_successor (std::ostream& os, size_t idx = 0) const { if (alive (idx)) os << "[live] "; else os << "[dead] "; return successor (idx)->short_print (os); } // Check if the jump to successor is live bool alive (const jit_block *asuccessor) const { return alive (successor_index (asuccessor)); } bool alive (size_t idx) const { return malive[idx]; } bool alive (int idx) const { return malive[idx]; } size_t successor_count (void) const { return malive.size (); } virtual bool infer (void); llvm::TerminatorInst *to_llvm (void) const; protected: virtual bool check_alive (size_t) const { return true; } private: std::vector<bool> malive; }; class jit_branch : public jit_terminator { public: jit_branch (jit_block *succ) : jit_terminator (1, succ) {} virtual size_t successor_count (void) const { return 1; } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent) << "branch: "; return print_successor (os); } JIT_VALUE_ACCEPT; }; class jit_cond_branch : public jit_terminator { public: jit_cond_branch (jit_value *c, jit_block *ctrue, jit_block *cfalse) : jit_terminator (2, ctrue, cfalse, c) {} jit_value *cond (void) const { return argument (2); } std::ostream& print_cond (std::ostream& os) const { return cond ()->short_print (os); } llvm::Value *cond_llvm (void) const { return cond ()->to_llvm (); } virtual size_t successor_count (void) const { return 2; } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent) << "cond_branch: "; print_cond (os) << ", "; print_successor (os, 0) << ", "; return print_successor (os, 1); } JIT_VALUE_ACCEPT; }; class jit_call : public jit_instruction { public: #define JIT_CALL_CONST(N) \ jit_call (const jit_operation& aoperation, \ OCT_MAKE_DECL_LIST (jit_value *, arg, N)) \ : jit_instruction (OCT_MAKE_ARG_LIST (arg, N)), moperation (aoperation) {} \ \ jit_call (const jit_operation& (*aoperation) (void), \ OCT_MAKE_DECL_LIST (jit_value *, arg, N)) \ : jit_instruction (OCT_MAKE_ARG_LIST (arg, N)), moperation (aoperation ()) \ {} JIT_CALL_CONST (1) JIT_CALL_CONST (2) JIT_CALL_CONST (3) JIT_CALL_CONST (4) #undef JIT_CALL_CONST jit_call (const jit_operation& aoperation, const std::vector<jit_value *>& args) : jit_instruction (args), moperation (aoperation) {} const jit_operation& operation (void) const { return moperation; } bool can_error (void) const { return overload ().can_error (); } const jit_function& overload (void) const { return moperation.overload (argument_types ()); } virtual bool needs_release (void) const { return type () && jit_typeinfo::get_release (type ()).valid (); } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent); if (use_count ()) short_print (os) << " = "; os << "call " << moperation.name () << " ("; for (size_t i = 0; i < argument_count (); ++i) { print_argument (os, i); if (i + 1 < argument_count ()) os << ", "; } return os << ")"; } virtual bool infer (void); JIT_VALUE_ACCEPT; private: const jit_operation& moperation; }; // FIXME: This is just ugly... // checks error_state, if error_state is false then goto the normal branche, // otherwise goto the error branch class jit_error_check : public jit_terminator { public: jit_error_check (jit_call *acheck_for, jit_block *normal, jit_block *error) : jit_terminator (2, error, normal, acheck_for) {} jit_call *check_for (void) const { return static_cast<jit_call *> (argument (2)); } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent) << "error_check " << *check_for () << ", "; print_successor (os, 1) << ", "; return print_successor (os, 0); } JIT_VALUE_ACCEPT; protected: virtual bool check_alive (size_t idx) const { return idx == 1 ? true : check_for ()->can_error (); } }; // for now only handles the 1D case class jit_magic_end : public jit_instruction { public: class context { public: context (void) : value (0), index (0), count (0) {} context (jit_value *avalue, size_t aindex, size_t acount) : value (avalue), index (aindex), count (acount) {} jit_value *value; size_t index; size_t count; }; jit_magic_end (const std::vector<context>& full_context); const jit_function& overload () const; jit_value *resolve_context (void) const; virtual bool infer (void); virtual std::ostream& short_print (std::ostream& os) const { return os << "magic_end"; } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { return short_print (print_indent (os, indent)); } JIT_VALUE_ACCEPT; }; class jit_extract_argument : public jit_assign_base { public: jit_extract_argument (jit_type *atype, jit_variable *adest) : jit_assign_base (adest) { stash_type (atype); } const std::string& name (void) const { return dest ()->name (); } const jit_function& overload (void) const { return jit_typeinfo::cast (type (), jit_typeinfo::get_any ()); } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { print_indent (os, indent); return short_print (os) << " = extract " << name (); } JIT_VALUE_ACCEPT; }; class jit_store_argument : public jit_instruction { public: jit_store_argument (jit_variable *var) : jit_instruction (var), dest (var) {} const std::string& name (void) const { return dest->name (); } const jit_function& overload (void) const { return jit_typeinfo::cast (jit_typeinfo::get_any (), result_type ()); } jit_value *result (void) const { return argument (0); } jit_type *result_type (void) const { return result ()->type (); } llvm::Value *result_llvm (void) const { return result ()->to_llvm (); } virtual std::ostream& print (std::ostream& os, size_t indent = 0) const { jit_value *res = result (); print_indent (os, indent) << "store "; dest->short_print (os); if (! isa<jit_variable> (res)) { os << " = "; res->short_print (os); } return os; } JIT_VALUE_ACCEPT; private: jit_variable *dest; }; class jit_ir_walker { public: virtual ~jit_ir_walker () {} #define JIT_METH(clname) \ virtual void visit (jit_ ## clname&) = 0; JIT_VISIT_IR_CLASSES; #undef JIT_METH }; template <typename T, jit_type *(*EXTRACT_T)(void), typename PASS_T, bool QUOTE> void jit_const<T, EXTRACT_T, PASS_T, QUOTE>::accept (jit_ir_walker& walker) { walker.visit (*this); } #undef JIT_VALUE_ACCEPT #endif #endif