Mercurial > hg > octave-nkf
view src/interp-core/xdiv.cc @ 15096:909a2797935b
maint: Move interp source code without DEFUNs to interp-core/ dir.
* src/Makefile.am, interpfcn/module.mk, operators/module.mk,
parse-tree/module.mk: Update build system by moving source lists and rules
to the correct directory.
* Cell.cc, Cell.h, c-file-ptr-stream.cc, c-file-ptr-stream.h, comment-list.cc,
comment-list.h, cutils.c, cutils.h, defun-dld.h, defun-int.h, display.cc,
display.h, dynamic-ld.cc, dynamic-ld.h, gl-render.cc, gl-render.h,
gl2ps-renderer.cc, gl2ps-renderer.h, gl2ps.c, gl2ps.h, gripes.cc, gripes.h,
jit-ir.cc, jit-ir.h, jit-typeinfo.cc, jit-typeinfo.h, jit-util.cc, jit-util.h,
ls-ascii-helper.cc, ls-ascii-helper.h, ls-hdf5.cc, ls-hdf5.h, ls-mat-ascii.cc,
ls-mat-ascii.h, ls-mat4.cc, ls-mat4.h, ls-mat5.cc, ls-mat5.h, ls-oct-binary.cc,
ls-oct-binary.h, ls-utils.cc, ls-utils.h, matherr.c, mex.cc, mex.h, mexproto.h,
module.mk, mxarray.in.h, oct-errno.h, oct-errno.in.cc, oct-fstrm.cc,
oct-fstrm.h, oct-hdf5.h, oct-iostrm.cc, oct-iostrm.h, oct-lvalue.cc,
oct-lvalue.h, oct-map.cc, oct-map.h, oct-obj.cc, oct-obj.h, oct-prcstrm.cc,
oct-prcstrm.h, oct-procbuf.cc, oct-procbuf.h, oct-stdstrm.h, oct-stream.cc,
oct-stream.h, oct-strstrm.cc, oct-strstrm.h, oct.h, procstream.cc,
procstream.h, pt-jit.cc, pt-jit.h, siglist.c, siglist.h, sparse-xdiv.cc,
sparse-xdiv.h, sparse-xpow.cc, sparse-xpow.h, txt-eng-ft.cc, txt-eng-ft.h,
txt-eng.h, unwind-prot.cc, unwind-prot.h, xdiv.cc, xdiv.h, xgl2ps.c, xnorm.cc,
xnorm.h, xpow.cc, xpow.h, zfstream.cc, zfstream.h: Move from src/ dir to
src/interp-core dir.
* ops.h: Move to operators/ directory.
* octave.gperf, token.cc, token.h: Move to parse-tree directory.
author | Rik <rik@octave.org> |
---|---|
date | Fri, 03 Aug 2012 13:18:21 -0700 |
parents | src/xdiv.cc@72c96de7a403 |
children |
line wrap: on
line source
/* Copyright (C) 1993-2012 John W. Eaton Copyright (C) 2008 Jaroslav Hajek Copyright (C) 2009-2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cassert> #include "Array-util.h" #include "CMatrix.h" #include "dMatrix.h" #include "CNDArray.h" #include "dNDArray.h" #include "fCMatrix.h" #include "fMatrix.h" #include "fCNDArray.h" #include "fNDArray.h" #include "oct-cmplx.h" #include "dDiagMatrix.h" #include "fDiagMatrix.h" #include "CDiagMatrix.h" #include "fCDiagMatrix.h" #include "quit.h" #include "error.h" #include "xdiv.h" static inline bool result_ok (octave_idx_type info) { assert (info != -1); return (info != -2); } static void solve_singularity_warning (double rcond) { warning_with_id ("Octave:singular-matrix-div", "matrix singular to machine precision, rcond = %g", rcond); } template <class T1, class T2> bool mx_leftdiv_conform (const T1& a, const T2& b, blas_trans_type blas_trans) { octave_idx_type a_nr = blas_trans == blas_no_trans ? a.rows () : a.cols (); octave_idx_type b_nr = b.rows (); if (a_nr != b_nr) { octave_idx_type a_nc = blas_trans == blas_no_trans ? a.cols () : a.rows (); octave_idx_type b_nc = b.cols (); gripe_nonconformant ("operator \\", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_LEFTDIV_CONFORM(T1, T2) \ template bool mx_leftdiv_conform (const T1&, const T2&, blas_trans_type) INSTANTIATE_MX_LEFTDIV_CONFORM (Matrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (Matrix, ComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexMatrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexMatrix, ComplexMatrix); template <class T1, class T2> bool mx_div_conform (const T1& a, const T2& b) { octave_idx_type a_nc = a.cols (); octave_idx_type b_nc = b.cols (); if (a_nc != b_nc) { octave_idx_type a_nr = a.rows (); octave_idx_type b_nr = b.rows (); gripe_nonconformant ("operator /", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_DIV_CONFORM(T1, T2) \ template bool mx_div_conform (const T1&, const T2&) INSTANTIATE_MX_DIV_CONFORM (Matrix, Matrix); INSTANTIATE_MX_DIV_CONFORM (Matrix, ComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, Matrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, ComplexMatrix); // Right division functions. // // op2 / op1: m cm // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ // -*- 1 -*- Matrix xdiv (const Matrix& a, const Matrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return Matrix (); octave_idx_type info; double rcond = 0.0; Matrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 2 -*- ComplexMatrix xdiv (const Matrix& a, const ComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 3 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const Matrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 4 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const ComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ Matrix x_el_div (double a, const Matrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); Matrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } ComplexMatrix x_el_div (double a, const ComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } ComplexMatrix x_el_div (const Complex a, const Matrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } ComplexMatrix x_el_div (const Complex a, const ComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); ComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // N-d array | 1 | 3 | // +---+----+ // complex N-d array | 2 | 4 | // +---+----+ NDArray x_el_div (double a, const NDArray& b) { NDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.length (); i++) { octave_quit (); result (i) = a / b (i); } return result; } ComplexNDArray x_el_div (double a, const ComplexNDArray& b) { ComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.length (); i++) { octave_quit (); result (i) = a / b (i); } return result; } ComplexNDArray x_el_div (const Complex a, const NDArray& b) { ComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.length (); i++) { octave_quit (); result (i) = a / b (i); } return result; } ComplexNDArray x_el_div (const Complex a, const ComplexNDArray& b) { ComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.length (); i++) { octave_quit (); result (i) = a / b (i); } return result; } // Left division functions. // // op2 \ op1: m cm // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ // -*- 1 -*- Matrix xleftdiv (const Matrix& a, const Matrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return Matrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 2 -*- ComplexMatrix xleftdiv (const Matrix& a, const ComplexMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 3 -*- ComplexMatrix xleftdiv (const ComplexMatrix& a, const Matrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 4 -*- ComplexMatrix xleftdiv (const ComplexMatrix& a, const ComplexMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } static void solve_singularity_warning (float rcond) { warning ("matrix singular to machine precision, rcond = %g", rcond); warning ("attempting to find minimum norm solution"); } INSTANTIATE_MX_LEFTDIV_CONFORM (FloatMatrix, FloatMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (FloatMatrix, FloatComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (FloatComplexMatrix, FloatMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (FloatComplexMatrix, FloatComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (FloatMatrix, FloatMatrix); INSTANTIATE_MX_DIV_CONFORM (FloatMatrix, FloatComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (FloatComplexMatrix, FloatMatrix); INSTANTIATE_MX_DIV_CONFORM (FloatComplexMatrix, FloatComplexMatrix); // Right division functions. // // op2 / op1: m cm // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ // -*- 1 -*- FloatMatrix xdiv (const FloatMatrix& a, const FloatMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return FloatMatrix (); octave_idx_type info; float rcond = 0.0; FloatMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 2 -*- FloatComplexMatrix xdiv (const FloatMatrix& a, const FloatComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; FloatComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 3 -*- FloatComplexMatrix xdiv (const FloatComplexMatrix& a, const FloatMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; FloatComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // -*- 4 -*- FloatComplexMatrix xdiv (const FloatComplexMatrix& a, const FloatComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; FloatComplexMatrix result = b.solve (typ, a.transpose (), info, rcond, solve_singularity_warning, true, blas_trans); return result.transpose (); } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ FloatMatrix x_el_div (float a, const FloatMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); FloatMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } FloatComplexMatrix x_el_div (float a, const FloatComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); FloatComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } FloatComplexMatrix x_el_div (const FloatComplex a, const FloatMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); FloatComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } FloatComplexMatrix x_el_div (const FloatComplex a, const FloatComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.columns (); FloatComplexMatrix result (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { octave_quit (); result (i, j) = a / b (i, j); } return result; } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // N-d array | 1 | 3 | // +---+----+ // complex N-d array | 2 | 4 | // +---+----+ FloatNDArray x_el_div (float a, const FloatNDArray& b) { FloatNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.length (); i++) { octave_quit (); result (i) = a / b (i); } return result; } FloatComplexNDArray x_el_div (float a, const FloatComplexNDArray& b) { FloatComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.length (); i++) { octave_quit (); result (i) = a / b (i); } return result; } FloatComplexNDArray x_el_div (const FloatComplex a, const FloatNDArray& b) { FloatComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.length (); i++) { octave_quit (); result (i) = a / b (i); } return result; } FloatComplexNDArray x_el_div (const FloatComplex a, const FloatComplexNDArray& b) { FloatComplexNDArray result (b.dims ()); for (octave_idx_type i = 0; i < b.length (); i++) { octave_quit (); result (i) = a / b (i); } return result; } // Left division functions. // // op2 \ op1: m cm // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ // -*- 1 -*- FloatMatrix xleftdiv (const FloatMatrix& a, const FloatMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return FloatMatrix (); octave_idx_type info; float rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 2 -*- FloatComplexMatrix xleftdiv (const FloatMatrix& a, const FloatComplexMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 3 -*- FloatComplexMatrix xleftdiv (const FloatComplexMatrix& a, const FloatMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // -*- 4 -*- FloatComplexMatrix xleftdiv (const FloatComplexMatrix& a, const FloatComplexMatrix& b, MatrixType &typ, blas_trans_type transt) { if (! mx_leftdiv_conform (a, b, transt)) return FloatComplexMatrix (); octave_idx_type info; float rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning, true, transt); } // Diagonal matrix division. template <class MT, class DMT> MT mdm_div_impl (const MT& a, const DMT& d) { if (! mx_div_conform (a, d)) return MT (); octave_idx_type m = a.rows (), n = d.rows (), l = d.length (); MT x (m, n); typedef typename DMT::element_type S; typedef typename MT::element_type T; const T *aa = a.data (); const S *dd = d.data (); T *xx = x.fortran_vec (); for (octave_idx_type j = 0; j < l; j++) { const S del = dd[j]; if (del != S ()) for (octave_idx_type i = 0; i < m; i++) xx[i] = aa[i] / del; else for (octave_idx_type i = 0; i < m; i++) xx[i] = T (); aa += m; xx += m; } for (octave_idx_type i = l*m; i < n*m; i++) xx[i] = T (); return x; } // Right division functions. // // op2 / op1: dm cdm // +-- +---+----+ // matrix | 1 | | // +---+----+ // complex_matrix | 2 | 3 | // +---+----+ // -*- 1 -*- Matrix xdiv (const Matrix& a, const DiagMatrix& b) { return mdm_div_impl (a, b); } // -*- 2 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const DiagMatrix& b) { return mdm_div_impl (a, b); } // -*- 3 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const ComplexDiagMatrix& b) { return mdm_div_impl (a, b); } // Right division functions, float type. // // op2 / op1: dm cdm // +-- +---+----+ // matrix | 1 | | // +---+----+ // complex_matrix | 2 | 3 | // +---+----+ // -*- 1 -*- FloatMatrix xdiv (const FloatMatrix& a, const FloatDiagMatrix& b) { return mdm_div_impl (a, b); } // -*- 2 -*- FloatComplexMatrix xdiv (const FloatComplexMatrix& a, const FloatDiagMatrix& b) { return mdm_div_impl (a, b); } // -*- 3 -*- FloatComplexMatrix xdiv (const FloatComplexMatrix& a, const FloatComplexDiagMatrix& b) { return mdm_div_impl (a, b); } template <class MT, class DMT> MT dmm_leftdiv_impl (const DMT& d, const MT& a) { if (! mx_leftdiv_conform (d, a, blas_no_trans)) return MT (); octave_idx_type m = d.cols (), n = a.cols (), k = a.rows (), l = d.length (); MT x (m, n); typedef typename DMT::element_type S; typedef typename MT::element_type T; const T *aa = a.data (); const S *dd = d.data (); T *xx = x.fortran_vec (); for (octave_idx_type j = 0; j < n; j++) { for (octave_idx_type i = 0; i < l; i++) xx[i] = dd[i] != S () ? aa[i] / dd[i] : T (); for (octave_idx_type i = l; i < m; i++) xx[i] = T (); aa += k; xx += m; } return x; } // Left division functions. // // op2 \ op1: m cm // +---+----+ // diag_matrix | 1 | 2 | // +---+----+ // complex_diag_matrix | | 3 | // +---+----+ // -*- 1 -*- Matrix xleftdiv (const DiagMatrix& a, const Matrix& b) { return dmm_leftdiv_impl (a, b); } // -*- 2 -*- ComplexMatrix xleftdiv (const DiagMatrix& a, const ComplexMatrix& b) { return dmm_leftdiv_impl (a, b); } // -*- 3 -*- ComplexMatrix xleftdiv (const ComplexDiagMatrix& a, const ComplexMatrix& b) { return dmm_leftdiv_impl (a, b); } // Left division functions, float type. // // op2 \ op1: m cm // +---+----+ // diag_matrix | 1 | 2 | // +---+----+ // complex_diag_matrix | | 3 | // +---+----+ // -*- 1 -*- FloatMatrix xleftdiv (const FloatDiagMatrix& a, const FloatMatrix& b) { return dmm_leftdiv_impl (a, b); } // -*- 2 -*- FloatComplexMatrix xleftdiv (const FloatDiagMatrix& a, const FloatComplexMatrix& b) { return dmm_leftdiv_impl (a, b); } // -*- 3 -*- FloatComplexMatrix xleftdiv (const FloatComplexDiagMatrix& a, const FloatComplexMatrix& b) { return dmm_leftdiv_impl (a, b); } // Diagonal by diagonal matrix division. template <class MT, class DMT> MT dmdm_div_impl (const MT& a, const DMT& d) { if (! mx_div_conform (a, d)) return MT (); octave_idx_type m = a.rows (), n = d.rows (), k = d.cols (); octave_idx_type l = std::min (m, n), lk = std::min (l, k); MT x (m, n); typedef typename DMT::element_type S; typedef typename MT::element_type T; const T *aa = a.data (); const S *dd = d.data (); T *xx = x.fortran_vec (); for (octave_idx_type i = 0; i < lk; i++) xx[i] = dd[i] != S () ? aa[i] / dd[i] : T (); for (octave_idx_type i = lk; i < l; i++) xx[i] = T (); return x; } // Right division functions. // // op2 / op1: dm cdm // +-- +---+----+ // diag_matrix | 1 | | // +---+----+ // complex_diag_matrix | 2 | 3 | // +---+----+ // -*- 1 -*- DiagMatrix xdiv (const DiagMatrix& a, const DiagMatrix& b) { return dmdm_div_impl (a, b); } // -*- 2 -*- ComplexDiagMatrix xdiv (const ComplexDiagMatrix& a, const DiagMatrix& b) { return dmdm_div_impl (a, b); } // -*- 3 -*- ComplexDiagMatrix xdiv (const ComplexDiagMatrix& a, const ComplexDiagMatrix& b) { return dmdm_div_impl (a, b); } // Right division functions, float type. // // op2 / op1: dm cdm // +-- +---+----+ // diag_matrix | 1 | | // +---+----+ // complex_diag_matrix | 2 | 3 | // +---+----+ // -*- 1 -*- FloatDiagMatrix xdiv (const FloatDiagMatrix& a, const FloatDiagMatrix& b) { return dmdm_div_impl (a, b); } // -*- 2 -*- FloatComplexDiagMatrix xdiv (const FloatComplexDiagMatrix& a, const FloatDiagMatrix& b) { return dmdm_div_impl (a, b); } // -*- 3 -*- FloatComplexDiagMatrix xdiv (const FloatComplexDiagMatrix& a, const FloatComplexDiagMatrix& b) { return dmdm_div_impl (a, b); } template <class MT, class DMT> MT dmdm_leftdiv_impl (const DMT& d, const MT& a) { if (! mx_leftdiv_conform (d, a, blas_no_trans)) return MT (); octave_idx_type m = d.cols (), n = a.cols (), k = d.rows (); octave_idx_type l = std::min (m, n), lk = std::min (l, k); MT x (m, n); typedef typename DMT::element_type S; typedef typename MT::element_type T; const T *aa = a.data (); const S *dd = d.data (); T *xx = x.fortran_vec (); for (octave_idx_type i = 0; i < lk; i++) xx[i] = dd[i] != S () ? aa[i] / dd[i] : T (); for (octave_idx_type i = lk; i < l; i++) xx[i] = T (); return x; } // Left division functions. // // op2 \ op1: dm cdm // +---+----+ // diag_matrix | 1 | 2 | // +---+----+ // complex_diag_matrix | | 3 | // +---+----+ // -*- 1 -*- DiagMatrix xleftdiv (const DiagMatrix& a, const DiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // -*- 2 -*- ComplexDiagMatrix xleftdiv (const DiagMatrix& a, const ComplexDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // -*- 3 -*- ComplexDiagMatrix xleftdiv (const ComplexDiagMatrix& a, const ComplexDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // Left division functions, float type. // // op2 \ op1: dm cdm // +---+----+ // diag_matrix | 1 | 2 | // +---+----+ // complex_diag_matrix | | 3 | // +---+----+ // -*- 1 -*- FloatDiagMatrix xleftdiv (const FloatDiagMatrix& a, const FloatDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // -*- 2 -*- FloatComplexDiagMatrix xleftdiv (const FloatDiagMatrix& a, const FloatComplexDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); } // -*- 3 -*- FloatComplexDiagMatrix xleftdiv (const FloatComplexDiagMatrix& a, const FloatComplexDiagMatrix& b) { return dmdm_leftdiv_impl (a, b); }