Mercurial > hg > octave-nkf
view libcruft/amos/cairy.f @ 14119:94e2a76f1e5a stable
doc: Final grammarcheck and spellcheck before 3.6.0 release.
* container.txi, aspell-octave.en.pws, expr.txi, vectorize.txi, accumarray.m,
accumdim.m, interpft.m, strread.m, parseparams.m, warning_ids.m, cellfun.cc,
help.cc: grammarcheck and spellcheck docstrings.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Thu, 29 Dec 2011 06:05:00 -0800 |
parents | 82be108cc558 |
children |
line wrap: on
line source
SUBROUTINE CAIRY(Z, ID, KODE, AI, NZ, IERR) C***BEGIN PROLOGUE CAIRY C***DATE WRITTEN 830501 (YYMMDD) C***REVISION DATE 890801 (YYMMDD) C***CATEGORY NO. B5K C***KEYWORDS AIRY FUNCTION,BESSEL FUNCTIONS OF ORDER ONE THIRD C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES C***PURPOSE TO COMPUTE AIRY FUNCTIONS AI(Z) AND DAI(Z) FOR COMPLEX Z C***DESCRIPTION C C ON KODE=1, CAIRY COMPUTES THE COMPLEX AIRY FUNCTION AI(Z) OR C ITS DERIVATIVE DAI(Z)/DZ ON ID=0 OR ID=1 RESPECTIVELY. ON C KODE=2, A SCALING OPTION CEXP(ZTA)*AI(Z) OR CEXP(ZTA)* C DAI(Z)/DZ IS PROVIDED TO REMOVE THE EXPONENTIAL DECAY IN C -PI/3.LT.ARG(Z).LT.PI/3 AND THE EXPONENTIAL GROWTH IN C PI/3.LT.ABS(ARG(Z)).LT.PI WHERE ZTA=(2/3)*Z*CSQRT(Z) C C WHILE THE AIRY FUNCTIONS AI(Z) AND DAI(Z)/DZ ARE ANALYTIC IN C THE WHOLE Z PLANE, THE CORRESPONDING SCALED FUNCTIONS DEFINED C FOR KODE=2 HAVE A CUT ALONG THE NEGATIVE REAL AXIS. C DEFINITIONS AND NOTATION ARE FOUND IN THE NBS HANDBOOK OF C MATHEMATICAL FUNCTIONS (REF. 1). C C INPUT C Z - Z=CMPLX(X,Y) C ID - ORDER OF DERIVATIVE, ID=0 OR ID=1 C KODE - A PARAMETER TO INDICATE THE SCALING OPTION C KODE= 1 RETURNS C AI=AI(Z) ON ID=0 OR C AI=DAI(Z)/DZ ON ID=1 C = 2 RETURNS C AI=CEXP(ZTA)*AI(Z) ON ID=0 OR C AI=CEXP(ZTA)*DAI(Z)/DZ ON ID=1 WHERE C ZTA=(2/3)*Z*CSQRT(Z) C C OUTPUT C AI - COMPLEX ANSWER DEPENDING ON THE CHOICES FOR ID AND C KODE C NZ - UNDERFLOW INDICATOR C NZ= 0 , NORMAL RETURN C NZ= 1 , AI=CMPLX(0.0,0.0) DUE TO UNDERFLOW IN C -PI/3.LT.ARG(Z).LT.PI/3 ON KODE=1 C IERR - ERROR FLAG C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED C IERR=1, INPUT ERROR - NO COMPUTATION C IERR=2, OVERFLOW - NO COMPUTATION, REAL(ZTA) C TOO LARGE WITH KODE=1. C IERR=3, CABS(Z) LARGE - COMPUTATION COMPLETED C LOSSES OF SIGNIFCANCE BY ARGUMENT REDUCTION C PRODUCE LESS THAN HALF OF MACHINE ACCURACY C IERR=4, CABS(Z) TOO LARGE - NO COMPUTATION C COMPLETE LOSS OF ACCURACY BY ARGUMENT C REDUCTION C IERR=5, ERROR - NO COMPUTATION, C ALGORITHM TERMINATION CONDITION NOT MET C C C***LONG DESCRIPTION C C AI AND DAI ARE COMPUTED FOR CABS(Z).GT.1.0 FROM THE K BESSEL C FUNCTIONS BY C C AI(Z)=C*SQRT(Z)*K(1/3,ZTA) , DAI(Z)=-C*Z*K(2/3,ZTA) C C=1.0/(PI*SQRT(3.0)) C ZTA=(2/3)*Z**(3/2) C C WITH THE POWER SERIES FOR CABS(Z).LE.1.0. C C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE- C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z IS LARGE, LOSSES C OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR. CONSEQUENTLY, IF C THE MAGNITUDE OF ZETA=(2/3)*Z**1.5 EXCEEDS U1=SQRT(0.5/UR), C THEN LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR C FLAG IERR=3 IS TRIGGERED WHERE UR=R1MACH(4)=UNIT ROUNDOFF. C ALSO, IF THE MAGNITUDE OF ZETA IS LARGER THAN U2=0.5/UR, THEN C ALL SIGNIFICANCE IS LOST AND IERR=4. IN ORDER TO USE THE INT C FUNCTION, ZETA MUST BE FURTHER RESTRICTED NOT TO EXCEED THE C LARGEST INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF ZETA C MUST BE RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, C AND U3 ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE C PRECISION ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE C PRECISION ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMIT- C ING IN THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT THE MAG- C NITUDE OF Z CANNOT EXCEED 3.1E+4 IN SINGLE AND 2.1E+6 IN C DOUBLE PRECISION ARITHMETIC. THIS ALSO MEANS THAT ONE CAN C EXPECT TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, C NO DIGITS IN SINGLE PRECISION AND ONLY 7 DIGITS IN DOUBLE C PRECISION ARITHMETIC. SIMILAR CONSIDERATIONS HOLD FOR OTHER C MACHINES. C C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE- C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))), C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K, C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES, C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P, C OR -PI/2+P. C C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF C COMMERCE, 1955. C C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983 C C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85- C 1018, MAY, 1985 C C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS. C MATH. SOFTWARE, 1986 C C***ROUTINES CALLED CACAI,CBKNU,I1MACH,R1MACH C***END PROLOGUE CAIRY COMPLEX AI, CONE, CSQ, CY, S1, S2, TRM1, TRM2, Z, ZTA, Z3 REAL AA, AD, AK, ALIM, ATRM, AZ, AZ3, BK, CK, COEF, C1, C2, DIG, * DK, D1, D2, ELIM, FID, FNU, RL, R1M5, SFAC, TOL, TTH, ZI, ZR, * Z3I, Z3R, R1MACH, BB, ALAZ INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH DIMENSION CY(1) DATA TTH, C1, C2, COEF /6.66666666666666667E-01, * 3.55028053887817240E-01,2.58819403792806799E-01, * 1.83776298473930683E-01/ DATA CONE / (1.0E0,0.0E0) / C***FIRST EXECUTABLE STATEMENT CAIRY IERR = 0 NZ=0 IF (ID.LT.0 .OR. ID.GT.1) IERR=1 IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1 IF (IERR.NE.0) RETURN AZ = CABS(Z) TOL = AMAX1(R1MACH(4),1.0E-18) FID = FLOAT(ID) IF (AZ.GT.1.0E0) GO TO 60 C----------------------------------------------------------------------- C POWER SERIES FOR CABS(Z).LE.1. C----------------------------------------------------------------------- S1 = CONE S2 = CONE IF (AZ.LT.TOL) GO TO 160 AA = AZ*AZ IF (AA.LT.TOL/AZ) GO TO 40 TRM1 = CONE TRM2 = CONE ATRM = 1.0E0 Z3 = Z*Z*Z AZ3 = AZ*AA AK = 2.0E0 + FID BK = 3.0E0 - FID - FID CK = 4.0E0 - FID DK = 3.0E0 + FID + FID D1 = AK*DK D2 = BK*CK AD = AMIN1(D1,D2) AK = 24.0E0 + 9.0E0*FID BK = 30.0E0 - 9.0E0*FID Z3R = REAL(Z3) Z3I = AIMAG(Z3) DO 30 K=1,25 TRM1 = TRM1*CMPLX(Z3R/D1,Z3I/D1) S1 = S1 + TRM1 TRM2 = TRM2*CMPLX(Z3R/D2,Z3I/D2) S2 = S2 + TRM2 ATRM = ATRM*AZ3/AD D1 = D1 + AK D2 = D2 + BK AD = AMIN1(D1,D2) IF (ATRM.LT.TOL*AD) GO TO 40 AK = AK + 18.0E0 BK = BK + 18.0E0 30 CONTINUE 40 CONTINUE IF (ID.EQ.1) GO TO 50 AI = S1*CMPLX(C1,0.0E0) - Z*S2*CMPLX(C2,0.0E0) IF (KODE.EQ.1) RETURN ZTA = Z*CSQRT(Z)*CMPLX(TTH,0.0E0) AI = AI*CEXP(ZTA) RETURN 50 CONTINUE AI = -S2*CMPLX(C2,0.0E0) IF (AZ.GT.TOL) AI = AI + Z*Z*S1*CMPLX(C1/(1.0E0+FID),0.0E0) IF (KODE.EQ.1) RETURN ZTA = Z*CSQRT(Z)*CMPLX(TTH,0.0E0) AI = AI*CEXP(ZTA) RETURN C----------------------------------------------------------------------- C CASE FOR CABS(Z).GT.1.0 C----------------------------------------------------------------------- 60 CONTINUE FNU = (1.0E0+FID)/3.0E0 C----------------------------------------------------------------------- C SET PARAMETERS RELATED TO MACHINE CONSTANTS. C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18. C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT. C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE. C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z. C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG). C----------------------------------------------------------------------- K1 = I1MACH(12) K2 = I1MACH(13) R1M5 = R1MACH(5) K = MIN0(IABS(K1),IABS(K2)) ELIM = 2.303E0*(FLOAT(K)*R1M5-3.0E0) K1 = I1MACH(11) - 1 AA = R1M5*FLOAT(K1) DIG = AMIN1(AA,18.0E0) AA = AA*2.303E0 ALIM = ELIM + AMAX1(-AA,-41.45E0) RL = 1.2E0*DIG + 3.0E0 ALAZ=ALOG(AZ) C----------------------------------------------------------------------- C TEST FOR RANGE C----------------------------------------------------------------------- AA=0.5E0/TOL BB=FLOAT(I1MACH(9))*0.5E0 AA=AMIN1(AA,BB) AA=AA**TTH IF (AZ.GT.AA) GO TO 260 AA=SQRT(AA) IF (AZ.GT.AA) IERR=3 CSQ=CSQRT(Z) ZTA=Z*CSQ*CMPLX(TTH,0.0E0) C----------------------------------------------------------------------- C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL C----------------------------------------------------------------------- IFLAG = 0 SFAC = 1.0E0 ZI = AIMAG(Z) ZR = REAL(Z) AK = AIMAG(ZTA) IF (ZR.GE.0.0E0) GO TO 70 BK = REAL(ZTA) CK = -ABS(BK) ZTA = CMPLX(CK,AK) 70 CONTINUE IF (ZI.NE.0.0E0) GO TO 80 IF (ZR.GT.0.0E0) GO TO 80 ZTA = CMPLX(0.0E0,AK) 80 CONTINUE AA = REAL(ZTA) IF (AA.GE.0.0E0 .AND. ZR.GT.0.0E0) GO TO 100 IF (KODE.EQ.2) GO TO 90 C----------------------------------------------------------------------- C OVERFLOW TEST C----------------------------------------------------------------------- IF (AA.GT.(-ALIM)) GO TO 90 AA = -AA + 0.25E0*ALAZ IFLAG = 1 SFAC = TOL IF (AA.GT.ELIM) GO TO 240 90 CONTINUE C----------------------------------------------------------------------- C CBKNU AND CACAI RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2 C----------------------------------------------------------------------- MR = 1 IF (ZI.LT.0.0E0) MR = -1 CALL CACAI(ZTA, FNU, KODE, MR, 1, CY, NN, RL, TOL, ELIM, ALIM) IF (NN.LT.0) GO TO 250 NZ = NZ + NN GO TO 120 100 CONTINUE IF (KODE.EQ.2) GO TO 110 C----------------------------------------------------------------------- C UNDERFLOW TEST C----------------------------------------------------------------------- IF (AA.LT.ALIM) GO TO 110 AA = -AA - 0.25E0*ALAZ IFLAG = 2 SFAC = 1.0E0/TOL IF (AA.LT.(-ELIM)) GO TO 180 110 CONTINUE CALL CBKNU(ZTA, FNU, KODE, 1, CY, NZ, TOL, ELIM, ALIM) 120 CONTINUE S1 = CY(1)*CMPLX(COEF,0.0E0) IF (IFLAG.NE.0) GO TO 140 IF (ID.EQ.1) GO TO 130 AI = CSQ*S1 RETURN 130 AI = -Z*S1 RETURN 140 CONTINUE S1 = S1*CMPLX(SFAC,0.0E0) IF (ID.EQ.1) GO TO 150 S1 = S1*CSQ AI = S1*CMPLX(1.0E0/SFAC,0.0E0) RETURN 150 CONTINUE S1 = -S1*Z AI = S1*CMPLX(1.0E0/SFAC,0.0E0) RETURN 160 CONTINUE AA = 1.0E+3*R1MACH(1) S1 = CMPLX(0.0E0,0.0E0) IF (ID.EQ.1) GO TO 170 IF (AZ.GT.AA) S1 = CMPLX(C2,0.0E0)*Z AI = CMPLX(C1,0.0E0) - S1 RETURN 170 CONTINUE AI = -CMPLX(C2,0.0E0) AA = SQRT(AA) IF (AZ.GT.AA) S1 = Z*Z*CMPLX(0.5E0,0.0E0) AI = AI + S1*CMPLX(C1,0.0E0) RETURN 180 CONTINUE NZ = 1 AI = CMPLX(0.0E0,0.0E0) RETURN 240 CONTINUE NZ = 0 IERR=2 RETURN 250 CONTINUE IF(NN.EQ.(-1)) GO TO 240 NZ=0 IERR=5 RETURN 260 CONTINUE IERR=4 NZ=0 RETURN END