Mercurial > hg > octave-nkf
view scripts/signal/arch_fit.m @ 14348:95c43fc8dbe1 stable rc-3-6-1-0
3.6.1 release candidate 0
* configure.ac (AC_INIT): Version is now 3.6.1-rc0.
(OCTAVE_RELEASE_DATE): Now 2012-02-07.
* liboctave/Makefile.am: Bump liboctave revision version.
* src/Makefile.am: Bump liboctave revision version.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 09 Feb 2012 11:25:04 -0500 |
parents | 72c96de7a403 |
children | 5d3a684236b0 |
line wrap: on
line source
## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{a}, @var{b}] =} arch_fit (@var{y}, @var{x}, @var{p}, @var{iter}, @var{gamma}, @var{a0}, @var{b0}) ## Fit an ARCH regression model to the time series @var{y} using the ## scoring algorithm in Engle's original ARCH paper. The model is ## ## @example ## @group ## y(t) = b(1) * x(t,1) + @dots{} + b(k) * x(t,k) + e(t), ## h(t) = a(1) + a(2) * e(t-1)^2 + @dots{} + a(p+1) * e(t-p)^2 ## @end group ## @end example ## ## @noindent ## in which @math{e(t)} is @math{N(0, h(t))}, given a time-series vector ## @var{y} up to time @math{t-1} and a matrix of (ordinary) regressors ## @var{x} up to @math{t}. The order of the regression of the residual ## variance is specified by @var{p}. ## ## If invoked as @code{arch_fit (@var{y}, @var{k}, @var{p})} with a ## positive integer @var{k}, fit an ARCH(@var{k}, @var{p}) process, ## i.e., do the above with the @math{t}-th row of @var{x} given by ## ## @example ## [1, y(t-1), @dots{}, y(t-k)] ## @end example ## ## Optionally, one can specify the number of iterations @var{iter}, the ## updating factor @var{gamma}, and initial values @math{a0} and ## @math{b0} for the scoring algorithm. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Fit an ARCH regression model function [a, b] = arch_fit (y, x, p, iter, gamma, a0, b0) if ((nargin < 3) || (nargin == 6) || (nargin > 7)) print_usage (); endif if (! (isvector (y))) error ("arch_fit: Y must be a vector"); endif T = length (y); y = reshape (y, T, 1); [rx, cx] = size (x); if ((rx == 1) && (cx == 1)) x = autoreg_matrix (y, x); elseif (! (rx == T)) error ("arch_fit: either rows (X) == length (Y), or X is a scalar"); endif [T, k] = size (x); if (nargin == 7) a = a0; b = b0; e = y - x * b; else [b, v_b, e] = ols (y, x); a = [v_b, (zeros (1, p))]'; if (nargin < 5) gamma = 0.1; if (nargin < 4) iter = 50; endif endif endif esq = e.^2; Z = autoreg_matrix (esq, p); for i = 1 : iter; h = Z * a; tmp = esq ./ h.^2 - 1 ./ h; s = 1 ./ h(1:T-p); for j = 1 : p; s = s - a(j+1) * tmp(j+1:T-p+j); endfor r = 1 ./ h(1:T-p); for j = 1:p; r = r + 2 * h(j+1:T-p+j).^2 .* esq(1:T-p); endfor r = sqrt (r); X_tilde = x(1:T-p, :) .* (r * ones (1,k)); e_tilde = e(1:T-p) .*s ./ r; delta_b = inv (X_tilde' * X_tilde) * X_tilde' * e_tilde; b = b + gamma * delta_b; e = y - x * b; esq = e .^ 2; Z = autoreg_matrix (esq, p); h = Z * a; f = esq ./ h - ones(T,1); Z_tilde = Z ./ (h * ones (1, p+1)); delta_a = inv (Z_tilde' * Z_tilde) * Z_tilde' * f; a = a + gamma * delta_a; endfor endfunction