Mercurial > hg > octave-nkf
view scripts/signal/arch_rnd.m @ 14348:95c43fc8dbe1 stable rc-3-6-1-0
3.6.1 release candidate 0
* configure.ac (AC_INIT): Version is now 3.6.1-rc0.
(OCTAVE_RELEASE_DATE): Now 2012-02-07.
* liboctave/Makefile.am: Bump liboctave revision version.
* src/Makefile.am: Bump liboctave revision version.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 09 Feb 2012 11:25:04 -0500 |
parents | 72c96de7a403 |
children | 5d3a684236b0 |
line wrap: on
line source
## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} arch_rnd (@var{a}, @var{b}, @var{t}) ## Simulate an ARCH sequence of length @var{t} with AR ## coefficients @var{b} and CH coefficients @var{a}. I.e., the result ## @math{y(t)} follows the model ## @c Set example in small font to prevent overfull line ## ## @smallexample ## y(t) = b(1) + b(2) * y(t-1) + @dots{} + b(lb) * y(t-lb+1) + e(t), ## @end smallexample ## ## @noindent ## where @math{e(t)}, given @var{y} up to time @math{t-1}, is ## @math{N(0, h(t))}, with ## @c Set example in small font to prevent overfull line ## ## @smallexample ## h(t) = a(1) + a(2) * e(t-1)^2 + @dots{} + a(la) * e(t-la+1)^2 ## @end smallexample ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Simulate an ARCH process function y = arch_rnd (a, b, t) if (nargin != 3) print_usage (); endif if (! ((min (size (a)) == 1) && (min (size (b)) == 1))) error ("arch_rnd: A and B must both be scalars or vectors"); endif if (! (isscalar (t) && (t > 0) && (rem (t, 1) == 0))) error ("arch_rnd: T must be a positive integer"); endif if (! (a(1) > 0)) error ("arch_rnd: A(1) must be positive"); endif ## perhaps add a test for the roots of a(z) here ... la = length (a); a = reshape (a, 1, la); if (la == 1) a = [a, 0]; la = la + 1; endif lb = length (b); b = reshape (b, 1, lb); if (lb == 1) b = [b, 0]; lb = lb + 1; endif m = max([la, lb]); e = zeros (t, 1); h = zeros (t, 1); y = zeros (t, 1); h(1) = a(1); e(1) = sqrt (h(1)) * randn; y(1) = b(1) + e(1); for t = 2:m ta = min ([t, la]); h(t) = a(1) + a(2:ta) * e(t-ta+1:t-1).^2; e(t) = sqrt (h(t)) * randn; tb = min ([t, lb]); y(t) = b(1) + b(2:tb) * y(t-tb+1:t-1) + e(t); endfor if (t > m) for t = m+1:t h(t) = a(1) + a(2:la) * e(t-la+1:t-1).^2; e(t) = sqrt (h(t)) * randn; y(t) = b(1) + b(2:lb) * y(t-tb+1:t-1) + e(t); endfor endif y = y(1:t); endfunction