Mercurial > hg > octave-nkf
view src/ov-flt-re-mat.cc @ 14348:95c43fc8dbe1 stable rc-3-6-1-0
3.6.1 release candidate 0
* configure.ac (AC_INIT): Version is now 3.6.1-rc0.
(OCTAVE_RELEASE_DATE): Now 2012-02-07.
* liboctave/Makefile.am: Bump liboctave revision version.
* src/Makefile.am: Bump liboctave revision version.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 09 Feb 2012 11:25:04 -0500 |
parents | 72c96de7a403 |
children | eff4a5933e28 |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton Copyright (C) 2009-2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <climits> #include <iostream> #include <vector> #include "data-conv.h" #include "lo-ieee.h" #include "lo-utils.h" #include "lo-specfun.h" #include "lo-mappers.h" #include "mach-info.h" #include "mx-base.h" #include "quit.h" #include "oct-locbuf.h" #include "defun.h" #include "gripes.h" #include "oct-obj.h" #include "oct-lvalue.h" #include "oct-stream.h" #include "ops.h" #include "ov-base.h" #include "ov-base-mat.h" #include "ov-base-mat.cc" #include "ov-scalar.h" #include "ov-float.h" #include "ov-flt-complex.h" #include "ov-re-mat.h" #include "ov-flt-re-mat.h" #include "ov-flt-cx-mat.h" #include "ov-re-sparse.h" #include "ov-flt-re-diag.h" #include "ov-flt-cx-diag.h" #include "ov-type-conv.h" #include "pr-output.h" #include "variables.h" #include "ops.h" #include "byte-swap.h" #include "ls-oct-ascii.h" #include "ls-utils.h" #include "ls-hdf5.h" #if ! defined (UCHAR_MAX) #define UCHAR_MAX 255 #endif template class octave_base_matrix<FloatNDArray>; DEFINE_OCTAVE_ALLOCATOR (octave_float_matrix); DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_float_matrix, "float matrix", "single"); octave_base_value * octave_float_matrix::try_narrowing_conversion (void) { octave_base_value *retval = 0; if (matrix.nelem () == 1) retval = new octave_float_scalar (matrix (0)); return retval; } double octave_float_matrix::double_value (bool) const { double retval = lo_ieee_nan_value (); if (numel () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "real matrix", "real scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real matrix", "real scalar"); return retval; } float octave_float_matrix::float_value (bool) const { float retval = lo_ieee_float_nan_value (); if (numel () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "real matrix", "real scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real matrix", "real scalar"); return retval; } // FIXME Matrix octave_float_matrix::matrix_value (bool) const { return Matrix (matrix.matrix_value ()); } FloatMatrix octave_float_matrix::float_matrix_value (bool) const { return matrix.matrix_value (); } Complex octave_float_matrix::complex_value (bool) const { double tmp = lo_ieee_nan_value (); Complex retval (tmp, tmp); if (rows () > 0 && columns () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "real matrix", "complex scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real matrix", "complex scalar"); return retval; } FloatComplex octave_float_matrix::float_complex_value (bool) const { double tmp = lo_ieee_float_nan_value (); FloatComplex retval (tmp, tmp); if (rows () > 0 && columns () > 0) { gripe_implicit_conversion ("Octave:array-as-scalar", "real matrix", "complex scalar"); retval = matrix (0, 0); } else gripe_invalid_conversion ("real matrix", "complex scalar"); return retval; } // FIXME ComplexMatrix octave_float_matrix::complex_matrix_value (bool) const { return ComplexMatrix (matrix.matrix_value ()); } FloatComplexMatrix octave_float_matrix::float_complex_matrix_value (bool) const { return FloatComplexMatrix (matrix.matrix_value ()); } ComplexNDArray octave_float_matrix::complex_array_value (bool) const { return ComplexNDArray (matrix); } FloatComplexNDArray octave_float_matrix::float_complex_array_value (bool) const { return FloatComplexNDArray (matrix); } NDArray octave_float_matrix::array_value (bool) const { return NDArray (matrix); } boolNDArray octave_float_matrix::bool_array_value (bool warn) const { if (matrix.any_element_is_nan ()) gripe_nan_to_logical_conversion (); else if (warn && matrix.any_element_not_one_or_zero ()) gripe_logical_conversion (); return boolNDArray (matrix); } charNDArray octave_float_matrix::char_array_value (bool) const { charNDArray retval (dims ()); octave_idx_type nel = numel (); for (octave_idx_type i = 0; i < nel; i++) retval.elem (i) = static_cast<char>(matrix.elem (i)); return retval; } SparseMatrix octave_float_matrix::sparse_matrix_value (bool) const { return SparseMatrix (matrix_value ()); } SparseComplexMatrix octave_float_matrix::sparse_complex_matrix_value (bool) const { // FIXME Need a SparseComplexMatrix (Matrix) constructor to make // this function more efficient. Then this should become // return SparseComplexMatrix (matrix.matrix_value ()); return SparseComplexMatrix (sparse_matrix_value ()); } octave_value octave_float_matrix::diag (octave_idx_type k) const { octave_value retval; if (k == 0 && matrix.ndims () == 2 && (matrix.rows () == 1 || matrix.columns () == 1)) retval = FloatDiagMatrix (DiagArray2<float> (matrix)); else retval = octave_base_matrix<FloatNDArray>::diag (k); return retval; } octave_value octave_float_matrix::convert_to_str_internal (bool, bool, char type) const { octave_value retval; dim_vector dv = dims (); octave_idx_type nel = dv.numel (); charNDArray chm (dv); bool warned = false; for (octave_idx_type i = 0; i < nel; i++) { octave_quit (); float d = matrix (i); if (xisnan (d)) { gripe_nan_to_character_conversion (); return retval; } else { int ival = NINT (d); if (ival < 0 || ival > UCHAR_MAX) { // FIXME -- is there something // better we could do? ival = 0; if (! warned) { ::warning ("range error for conversion to character value"); warned = true; } } chm (i) = static_cast<char> (ival); } } retval = octave_value (chm, type); return retval; } bool octave_float_matrix::save_ascii (std::ostream& os) { dim_vector d = dims (); if (d.length () > 2) { FloatNDArray tmp = float_array_value (); os << "# ndims: " << d.length () << "\n"; for (int i=0; i < d.length (); i++) os << " " << d (i); os << "\n" << tmp; } else { // Keep this case, rather than use generic code above for backward // compatiability. Makes load_ascii much more complex!! os << "# rows: " << rows () << "\n" << "# columns: " << columns () << "\n"; os << float_matrix_value (); } return true; } bool octave_float_matrix::load_ascii (std::istream& is) { bool success = true; string_vector keywords(2); keywords[0] = "ndims"; keywords[1] = "rows"; std::string kw; octave_idx_type val = 0; if (extract_keyword (is, keywords, kw, val, true)) { if (kw == "ndims") { int mdims = static_cast<int> (val); if (mdims >= 0) { dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) is >> dv(i); if (is) { FloatNDArray tmp(dv); is >> tmp; if (is) matrix = tmp; else { error ("load: failed to load matrix constant"); success = false; } } else { error ("load: failed to read dimensions"); success = false; } } else { error ("load: failed to extract number of dimensions"); success = false; } } else if (kw == "rows") { octave_idx_type nr = val; octave_idx_type nc = 0; if (nr >= 0 && extract_keyword (is, "columns", nc) && nc >= 0) { if (nr > 0 && nc > 0) { FloatMatrix tmp (nr, nc); is >> tmp; if (is) matrix = tmp; else { error ("load: failed to load matrix constant"); success = false; } } else if (nr == 0 || nc == 0) matrix = FloatMatrix (nr, nc); else panic_impossible (); } else { error ("load: failed to extract number of rows and columns"); success = false; } } else panic_impossible (); } else { error ("load: failed to extract number of rows and columns"); success = false; } return success; } bool octave_float_matrix::save_binary (std::ostream& os, bool&) { dim_vector d = dims (); if (d.length() < 1) return false; // Use negative value for ndims to differentiate with old format!! int32_t tmp = - d.length(); os.write (reinterpret_cast<char *> (&tmp), 4); for (int i = 0; i < d.length (); i++) { tmp = d(i); os.write (reinterpret_cast<char *> (&tmp), 4); } FloatNDArray m = float_array_value (); save_type st = LS_FLOAT; if (d.numel () > 8192) // FIXME -- make this configurable. { float max_val, min_val; if (m.all_integers (max_val, min_val)) st = get_save_type (max_val, min_val); } const float *mtmp = m.data (); write_floats (os, mtmp, st, d.numel ()); return true; } bool octave_float_matrix::load_binary (std::istream& is, bool swap, oct_mach_info::float_format fmt) { char tmp; int32_t mdims; if (! is.read (reinterpret_cast<char *> (&mdims), 4)) return false; if (swap) swap_bytes<4> (&mdims); if (mdims < 0) { mdims = - mdims; int32_t di; dim_vector dv; dv.resize (mdims); for (int i = 0; i < mdims; i++) { if (! is.read (reinterpret_cast<char *> (&di), 4)) return false; if (swap) swap_bytes<4> (&di); dv(i) = di; } // Convert an array with a single dimension to be a row vector. // Octave should never write files like this, other software // might. if (mdims == 1) { mdims = 2; dv.resize (mdims); dv(1) = dv(0); dv(0) = 1; } if (! is.read (reinterpret_cast<char *> (&tmp), 1)) return false; FloatNDArray m(dv); float *re = m.fortran_vec (); read_floats (is, re, static_cast<save_type> (tmp), dv.numel (), swap, fmt); if (error_state || ! is) return false; matrix = m; } else { int32_t nr, nc; nr = mdims; if (! is.read (reinterpret_cast<char *> (&nc), 4)) return false; if (swap) swap_bytes<4> (&nc); if (! is.read (reinterpret_cast<char *> (&tmp), 1)) return false; FloatMatrix m (nr, nc); float *re = m.fortran_vec (); octave_idx_type len = nr * nc; read_floats (is, re, static_cast<save_type> (tmp), len, swap, fmt); if (error_state || ! is) return false; matrix = m; } return true; } #if defined (HAVE_HDF5) bool octave_float_matrix::save_hdf5 (hid_t loc_id, const char *name, bool) { dim_vector dv = dims (); int empty = save_hdf5_empty (loc_id, name, dv); if (empty) return (empty > 0); int rank = dv.length (); hid_t space_hid = -1, data_hid = -1; bool retval = true; FloatNDArray m = array_value (); OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); // Octave uses column-major, while HDF5 uses row-major ordering for (int i = 0; i < rank; i++) hdims[i] = dv (rank-i-1); space_hid = H5Screate_simple (rank, hdims, 0); if (space_hid < 0) return false; hid_t save_type_hid = H5T_NATIVE_FLOAT; #if HAVE_HDF5_INT2FLOAT_CONVERSIONS // hdf5 currently doesn't support float/integer conversions else { float max_val, min_val; if (m.all_integers (max_val, min_val)) save_type_hid = save_type_to_hdf5 (get_save_type (max_val, min_val)); } #endif /* HAVE_HDF5_INT2FLOAT_CONVERSIONS */ #if HAVE_HDF5_18 data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); #else data_hid = H5Dcreate (loc_id, name, save_type_hid, space_hid, H5P_DEFAULT); #endif if (data_hid < 0) { H5Sclose (space_hid); return false; } float *mtmp = m.fortran_vec (); retval = H5Dwrite (data_hid, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, mtmp) >= 0; H5Dclose (data_hid); H5Sclose (space_hid); return retval; } bool octave_float_matrix::load_hdf5 (hid_t loc_id, const char *name) { bool retval = false; dim_vector dv; int empty = load_hdf5_empty (loc_id, name, dv); if (empty > 0) matrix.resize(dv); if (empty) return (empty > 0); #if HAVE_HDF5_18 hid_t data_hid = H5Dopen (loc_id, name, H5P_DEFAULT); #else hid_t data_hid = H5Dopen (loc_id, name); #endif hid_t space_id = H5Dget_space (data_hid); hsize_t rank = H5Sget_simple_extent_ndims (space_id); if (rank < 1) { H5Sclose (space_id); H5Dclose (data_hid); return false; } OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank); OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank); H5Sget_simple_extent_dims (space_id, hdims, maxdims); // Octave uses column-major, while HDF5 uses row-major ordering if (rank == 1) { dv.resize (2); dv(0) = 1; dv(1) = hdims[0]; } else { dv.resize (rank); for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--) dv(j) = hdims[i]; } FloatNDArray m (dv); float *re = m.fortran_vec (); if (H5Dread (data_hid, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, re) >= 0) { retval = true; matrix = m; } H5Sclose (space_id); H5Dclose (data_hid); return retval; } #endif void octave_float_matrix::print_raw (std::ostream& os, bool pr_as_read_syntax) const { octave_print_internal (os, matrix, pr_as_read_syntax, current_print_indent_level ()); } mxArray * octave_float_matrix::as_mxArray (void) const { mxArray *retval = new mxArray (mxSINGLE_CLASS, dims (), mxREAL); float *pr = static_cast<float *> (retval->get_data ()); mwSize nel = numel (); const float *p = matrix.data (); for (mwIndex i = 0; i < nel; i++) pr[i] = p[i]; return retval; } // This uses a smarter strategy for doing the complex->real mappers. We // allocate an array for a real result and keep filling it until a complex // result is produced. static octave_value do_rc_map (const FloatNDArray& a, FloatComplex (&fcn) (float)) { octave_idx_type n = a.numel (); NoAlias<FloatNDArray> rr (a.dims ()); for (octave_idx_type i = 0; i < n; i++) { octave_quit (); FloatComplex tmp = fcn (a(i)); if (tmp.imag () == 0.0) rr(i) = tmp.real (); else { NoAlias<FloatComplexNDArray> rc (a.dims ()); for (octave_idx_type j = 0; j < i; j++) rc(j) = rr(j); rc(i) = tmp; for (octave_idx_type j = i+1; j < n; j++) { octave_quit (); rc(j) = fcn (a(j)); } return new octave_float_complex_matrix (rc); } } return rr; } octave_value octave_float_matrix::map (unary_mapper_t umap) const { switch (umap) { case umap_imag: return FloatNDArray (matrix.dims (), 0.0); case umap_real: case umap_conj: return matrix; // Mappers handled specially. #define ARRAY_METHOD_MAPPER(UMAP, FCN) \ case umap_ ## UMAP: \ return octave_value (matrix.FCN ()) ARRAY_METHOD_MAPPER (abs, abs); ARRAY_METHOD_MAPPER (isnan, isnan); ARRAY_METHOD_MAPPER (isinf, isinf); ARRAY_METHOD_MAPPER (finite, isfinite); #define ARRAY_MAPPER(UMAP, TYPE, FCN) \ case umap_ ## UMAP: \ return octave_value (matrix.map<TYPE> (FCN)) #define RC_ARRAY_MAPPER(UMAP, TYPE, FCN) \ case umap_ ## UMAP: \ return do_rc_map (matrix, FCN) RC_ARRAY_MAPPER (acos, FloatComplex, rc_acos); RC_ARRAY_MAPPER (acosh, FloatComplex, rc_acosh); ARRAY_MAPPER (angle, float, ::arg); ARRAY_MAPPER (arg, float, ::arg); RC_ARRAY_MAPPER (asin, FloatComplex, rc_asin); ARRAY_MAPPER (asinh, float, ::asinhf); ARRAY_MAPPER (atan, float, ::atanf); RC_ARRAY_MAPPER (atanh, FloatComplex, rc_atanh); ARRAY_MAPPER (erf, float, ::erff); ARRAY_MAPPER (erfinv, float, ::erfinv); ARRAY_MAPPER (erfc, float, ::erfcf); ARRAY_MAPPER (erfcx, float, ::erfcx); ARRAY_MAPPER (gamma, float, xgamma); RC_ARRAY_MAPPER (lgamma, FloatComplex, rc_lgamma); ARRAY_MAPPER (cbrt, float, ::cbrtf); ARRAY_MAPPER (ceil, float, ::ceilf); ARRAY_MAPPER (cos, float, ::cosf); ARRAY_MAPPER (cosh, float, ::coshf); ARRAY_MAPPER (exp, float, ::expf); ARRAY_MAPPER (expm1, float, ::expm1f); ARRAY_MAPPER (fix, float, ::fix); ARRAY_MAPPER (floor, float, ::floorf); RC_ARRAY_MAPPER (log, FloatComplex, rc_log); RC_ARRAY_MAPPER (log2, FloatComplex, rc_log2); RC_ARRAY_MAPPER (log10, FloatComplex, rc_log10); RC_ARRAY_MAPPER (log1p, FloatComplex, rc_log1p); ARRAY_MAPPER (round, float, xround); ARRAY_MAPPER (roundb, float, xroundb); ARRAY_MAPPER (signum, float, ::signum); ARRAY_MAPPER (sin, float, ::sinf); ARRAY_MAPPER (sinh, float, ::sinhf); RC_ARRAY_MAPPER (sqrt, FloatComplex, rc_sqrt); ARRAY_MAPPER (tan, float, ::tanf); ARRAY_MAPPER (tanh, float, ::tanhf); ARRAY_MAPPER (isna, bool, octave_is_NA); default: return octave_base_value::map (umap); } } DEFUN (single, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} single (@var{x})\n\ Convert @var{x} to single precision type.\n\ @seealso{double}\n\ @end deftypefn") { // The OCTAVE_TYPE_CONV_BODY3 macro declares retval, so they go // inside their own scopes, and we don't declare retval here to // avoid a shadowed declaration warning. if (args.length () == 1) { if (args(0).is_diag_matrix ()) { if (args(0).is_complex_type ()) { OCTAVE_TYPE_CONV_BODY3 (single, octave_float_complex_diag_matrix, octave_float_complex); } else { OCTAVE_TYPE_CONV_BODY3 (single, octave_float_diag_matrix, octave_float_scalar); } } else if (args(0).is_sparse_type ()) { error ("single: sparse type does not support single precision"); } else if (args(0).is_complex_type ()) { OCTAVE_TYPE_CONV_BODY3 (single, octave_float_complex_matrix, octave_float_complex); } else { OCTAVE_TYPE_CONV_BODY3 (single, octave_float_matrix, octave_float_scalar); } } else print_usage (); return octave_value (); } /* %!assert (class (single(1)), "single") %!assert (class (single(1 + i)), "single") %!assert (class (single (int8 (1))), "single") %!assert (class (single (uint8 (1))), "single") %!assert (class (single (int16 (1))), "single") %!assert (class (single (uint16 (1))), "single") %!assert (class (single (int32 (1))), "single") %!assert (class (single (uint32 (1))), "single") %!assert (class (single (int64 (1))), "single") %!assert (class (single (uint64 (1))), "single") %!assert (class (single (true)), "single") %!assert (class (single ("A")), "single") %!error (single (sparse (1))) %!test %! x = diag ([1 3 2]); %! y = single (x); %! assert (class (x), "double"); %! assert (class (y), "single"); %!test %! x = diag ([i 3 2]); %! y = single (x); %! assert (class (x), "double"); %! assert (class (y), "single"); */