Mercurial > hg > octave-nkf
view scripts/polynomial/polyaffine.m @ 12118:973f585cfdf2 release-3-2-x
include PTHREAD_CFLAGS in LINK_DEPS for liboctave
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Fri, 22 Jan 2010 10:21:33 +0100 |
parents | a8be2f7c81ee |
children | 09da0bd91412 |
line wrap: on
line source
## Copyright (C) 2009 Tony Richardson, Jaroslav Hajek ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} polyaffine (@var{f}, @var{mu}) ## Return the coefficients of the polynomial whose coefficients are given by ## vector @var{f} after an affine tranformation. If @var{f} is the vector ## representing the polynomial f(x), then @var{g} = polytrans (@var{f}, ## @var{mu}) is the vector representing ## @example ## g(x) = f((x-@var{mu}(1))/@var{mu}(2)). ## @end example ## ## @seealso{polyval} ## @end deftypefn function g = polyaffine (f, mu) if (nargin != 2) print_usage (); endif if (! isvector (f)) error ("polyaffine: first argument must be a vector."); endif if (! isvector (mu) || length (mu) != 2) error ("polyaffine: second argument must be a two-element vector."); endif lf = length (f); ## Ensure that f is a row vector if (rows (f) > 1) f = f.'; endif g = f; ## Scale. if (mu(2) != 1) g = g ./ (mu(2) .^ (lf-1:-1:0)); endif ## Translate. if (mu(1) != 0) w = (-mu(1)) .^ (0:lf-1); ii = lf:-1:1; g = g(ii) * (toeplitz (w) .* pascal (lf, -1)); g = g(ii); endif endfunction %!test %! f = [1/5 4/5 -7/5 -2]; %! %! mu = [1, 1.2]; %! %! g = polyaffine (f, mu); %! %! x = linspace (-4, 4, 100); %! %! assert (polyval(f, x, [], mu), polyval (g, x), 1e-10); %! %!demo %! f = [1/5 4/5 -7/5 -2]; %! %! g = polyaffine (f, [1, 1.2]); %! %! x = linspace (-4, 4, 100); %! %! plot(x, polyval (f, x), x, polyval (g, x)); %! %! axis ([-4 4 -3 5]); %! grid ("on");