Mercurial > hg > octave-nkf
view scripts/special-matrix/vander.m @ 12118:973f585cfdf2 release-3-2-x
include PTHREAD_CFLAGS in LINK_DEPS for liboctave
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Fri, 22 Jan 2010 10:21:33 +0100 |
parents | f0c3d3fc4903 |
children | 3140cb7a05a1 |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2002, ## 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} vander (@var{c}, @var{n}) ## Return the Vandermonde matrix whose next to last column is @var{c}. ## If @var{n} is specified, it determines the number of columns; ## otherwise, @var{n} is taken to be equal to the length of @var{c}. ## ## A Vandermonde matrix has the form: ## @tex ## $$ ## \left[\matrix{c_1^{n-1} & \cdots & c_1^2 & c_1 & 1 \cr ## c_2^{n-1} & \cdots & c_2^2 & c_2 & 1 \cr ## \vdots & \ddots & \vdots & \vdots & \vdots \cr ## c_n^{n-1} & \cdots & c_n^2 & c_n & 1 }\right] ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## c(1)^(n-1) @dots{} c(1)^2 c(1) 1 ## c(2)^(n-1) @dots{} c(2)^2 c(2) 1 ## . . . . . ## . . . . . ## . . . . . ## c(n)^(n-1) @dots{} c(n)^2 c(n) 1 ## @end group ## @end example ## @end ifnottex ## @seealso{hankel, sylvester_matrix, hilb, invhilb, toeplitz} ## @end deftypefn ## Author: jwe function retval = vander (c, n) if (nargin == 1) n = length (c); elseif (nargin != 2) print_usage (); endif if (isvector (c)) retval = zeros (length (c), n, class (c)); ## avoiding many ^s appears to be faster for n >= 100. d = 1; c = c(:); for i = n:-1:1 retval(:,i) = d; d = c .* d; endfor else error ("vander: argument must be a vector"); endif endfunction %!test %! c = [0,1,2,3]; %! expect = [0,0,0,1; 1,1,1,1; 8,4,2,1; 27,9,3,1]; %! result = vander(c); %! assert(expect, result); %!assert((vander (1) == 1 && vander ([1, 2, 3]) == vander ([1; 2; 3]) %! && vander ([1, 2, 3]) == [1, 1, 1; 4, 2, 1; 9, 3, 1] %! && vander ([1, 2, 3]*i) == [-1, i, 1; -4, 2i, 1; -9, 3i, 1])); %!assert(vander (2, 3), [4, 2, 1]) %!assert(vander ([2, 3], 3), [4, 2, 1; 9, 3, 1]) %!error vander ([1, 2; 3, 4]); %!error vander (); %!error vander (1, 2, 3);