Mercurial > hg > octave-nkf
view scripts/linear-algebra/norm.m @ 6844:9ac351b05b51
[project @ 2007-08-30 00:46:23 by jwe]
author | jwe |
---|---|
date | Thu, 30 Aug 2007 00:46:23 +0000 |
parents | 184ab67c3bc1 |
children | 688ef9440022 |
line wrap: on
line source
## Copyright (C) 1996, 1997 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} norm (@var{a}, @var{p}) ## Compute the p-norm of the matrix @var{a}. If the second argument is ## missing, @code{p = 2} is assumed. ## ## If @var{a} is a matrix: ## ## @table @asis ## @item @var{p} = @code{1} ## 1-norm, the largest column sum of the absolute values of @var{a}. ## ## @item @var{p} = @code{2} ## Largest singular value of @var{a}. ## ## @item @var{p} = @code{Inf} ## @cindex infinity norm ## Infinity norm, the largest row sum of the absolute values of @var{a}. ## ## @item @var{p} = @code{"fro"} ## @cindex Frobenius norm ## Frobenius norm of @var{a}, @code{sqrt (sum (diag (@var{a}' * @var{a})))}. ## @end table ## ## If @var{a} is a vector or a scalar: ## ## @table @asis ## @item @var{p} = @code{Inf} ## @code{max (abs (@var{a}))}. ## ## @item @var{p} = @code{-Inf} ## @code{min (abs (@var{a}))}. ## ## @item other ## p-norm of @var{a}, @code{(sum (abs (@var{a}) .^ @var{p})) ^ (1/@var{p})}. ## @end table ## @seealso{cond, svd} ## @end deftypefn ## Author: jwe function retval = norm (x, p) if (nargin < 1 || nargin > 2) print_usage (); endif if (isempty (x)) retval = []; return; endif if (ndims (x) > 2) error ("norm: only valid on 2-D objects") endif if (nargin == 1) p = 2; endif ## Do we have a vector or matrix as the first argument? if (is_vector (x)) if (isinteger (x) || issparse (x)) if (ischar (p)) if (strcmp (p, "fro")) retval = sqrt (sum (abs (x) .^ 2)); elseif (strcmp (p, "inf")) retval = max (abs (x)); else error ("norm: unrecognized norm"); endif else if (p == Inf) retval = max (abs (x)); elseif (p == -Inf) retval = min (abs (x)); else retval = sum (abs (x) .^ p) ^ (1/p); endif endif else retval = __vnorm__ (x, p); endif else if (ischar (p)) if (strcmp (p, "fro")) retval = sqrt (sum (sum (abs (x) .^ 2))); elseif (strcmp (p, "inf")) retval = max (sum (abs (x'))); else error ("norm: unrecognized vector norm"); endif else if (p == 1) retval = max (sum (abs (x))); elseif (p == 2) s = svd (x); retval = s (1); elseif (p == Inf) retval = max (sum (abs (x'))); else error ("norm: unrecognized matrix norm"); endif endif endif endfunction %!shared x %! x = [1, -3, 4, 5, -7]; %!assert(norm(x,1), 20); %!assert(norm(x,2), 10); %!assert(norm(x,3), 8.24257059961711, -4*eps); %!assert(norm(x,Inf), 7); %!assert(norm(x,-Inf), 1); %!assert(norm(x,"inf"), 7); %!assert(norm(x,"fro"), 10); %!assert(norm(x), 10); %!assert(norm([1e200, 1]), 1e200); %!shared m %! m = magic (4); %!assert(norm(m,1), 34); %!assert(norm(m,2), 34); %!assert(norm(m,Inf), 34); %!assert(norm(m,"inf"), 34);