Mercurial > hg > octave-nkf
view scripts/sparse/spaugment.m @ 13929:9cae456085c2
Grammarcheck of documentation before 3.6.0 release.
* accumarray.m, blkdiag.m, nargoutchk.m, nthargout.m, profexplore.m, profile.m,
computer.m, orderfields.m, recycle.m, version.m, sqp.m, matlabroot.m,
__plt_get_axis_arg__.m, isonormals.m, isosurface.m, __fltk_file_filter__.m,
__is_function__.m, __uigetdir_fltk__.m, __uigetfile_fltk__.m,
__uiobject_split_args__.m, __uiputfile_fltk__.m, uicontextmenu.m, uiresume.m,
uiwait.m, mkpp.m, ppder.m, residue.m, addpref.m, getpref.m, ispref.m,
loadprefs.m, prefsfile.m, saveprefs.m, rmpref.m, setpref.m, fftshift.m, bicg.m,
bicgstab.m, cgs.m, gmres.m, __sprand_impl__.m, quantile.m, deblank.m,
strsplit.m, addtodate.m, bsxfun.cc, kron.cc, regexp.cc, data.cc, file-io.cc,
graphics.cc, load-save.cc, mappers.cc: Grammarcheck of documentation
before 3.6.0 release.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Wed, 23 Nov 2011 08:38:19 -0800 |
parents | d0b799dafede |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 2008-2011 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{s} =} spaugment (@var{A}, @var{c}) ## Create the augmented matrix of @var{A}. This is given by ## ## @example ## @group ## [@var{c} * eye(@var{m}, @var{m}),@var{A}; @var{A}', zeros(@var{n}, ## @var{n})] ## @end group ## @end example ## ## @noindent ## This is related to the least squares solution of ## @code{@var{A} \\ @var{b}}, by ## ## @example ## @group ## @var{s} * [ @var{r} / @var{c}; x] = [@var{b}, zeros(@var{n}, ## columns(@var{b})] ## @end group ## @end example ## ## @noindent ## where @var{r} is the residual error ## ## @example ## @var{r} = @var{b} - @var{A} * @var{x} ## @end example ## ## As the matrix @var{s} is symmetric indefinite it can be factorized ## with @code{lu}, and the minimum norm solution can therefore be found ## without the need for a @code{qr} factorization. As the residual ## error will be @code{zeros (@var{m}, @var{m})} for under determined ## problems, and example can be ## ## @example ## @group ## m = 11; n = 10; mn = max(m ,n); ## A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)], ## [-1, 0, 1], m, n); ## x0 = A \ ones (m,1); ## s = spaugment (A); ## [L, U, P, Q] = lu (s); ## x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)]))); ## x1 = x1(end - n + 1 : end); ## @end group ## @end example ## ## To find the solution of an overdetermined problem needs an estimate ## of the residual error @var{r} and so it is more complex to formulate ## a minimum norm solution using the @code{spaugment} function. ## ## In general the left division operator is more stable and faster than ## using the @code{spaugment} function. ## @end deftypefn function s = spaugment (A, c) if (nargin < 2) if (issparse (A)) c = max (max (abs (A))) / 1000; else if (ndims (A) != 2) error ("spaugment: expecting 2-dimenisional matrix"); else c = max (abs (A(:))) / 1000; endif endif elseif (!isscalar (c)) error ("spaugment: C must be a scalar"); endif [m, n] = size (A); s = [ c * speye(m, m), A; A', sparse(n, n)]; endfunction %!testif HAVE_UMFPACK %! m = 11; n = 10; mn = max(m ,n); %! A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],[-1,0,1], m, n); %! x0 = A \ ones (m,1); %! s = spaugment (A); %! [L, U, P, Q] = lu (s); %! x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)]))); %! x1 = x1(end - n + 1 : end); %! assert (x1, x0, 1e-6)