Mercurial > hg > octave-nkf
view scripts/polynomial/mkpp.m @ 20818:9d2023d1a63c
binoinv.m: Implement binary search algorithm for 28X performance increase (bug #34363).
* binoinv.m: Call new functions scalar_binoinv or vector_binoinv to calculate
binoinv. If there are still uncalculated values then call bin_search_binoinv
to perform binary search for remaining values. Add more BIST tests.
* binoinv.m (scalar_binoinv): New subfunction to calculate binoinv for scalar x.
Stops when x > 1000.
* binoinv.m (vector_binoinv): New subfunction to calculate binoinv for scalar x.
Stops when x > 1000.
author | Lachlan Andrew <lachlanbis@gmail.com> |
---|---|
date | Sun, 11 Oct 2015 19:49:40 -0700 |
parents | aa36fb998a4d |
children |
line wrap: on
line source
## Copyright (C) 2000-2015 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}) ## @deftypefnx {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}, @var{d}) ## ## Construct a piecewise polynomial (pp) structure from sample points ## @var{breaks} and coefficients @var{coefs}. ## ## @var{breaks} must be a vector of strictly increasing values. The number of ## intervals is given by @code{@var{ni} = length (@var{breaks}) - 1}. ## ## When @var{m} is the polynomial order @var{coefs} must be of size: ## @var{ni} x @var{m} + 1. ## ## The i-th row of @var{coefs}, @code{@var{coefs} (@var{i},:)}, contains the ## coefficients for the polynomial over the @var{i}-th interval, ordered from ## highest (@var{m}) to lowest (@var{0}). ## ## @var{coefs} may also be a multi-dimensional array, specifying a vector-valued ## or array-valued polynomial. In that case the polynomial order is defined ## by the length of the last dimension of @var{coefs}. The size of first ## dimension(s) are given by the scalar or vector @var{d}. If @var{d} is not ## given it is set to @code{1}. In any case @var{coefs} is reshaped to a 2-D ## matrix of size @code{[@var{ni}*prod(@var{d} @var{m})] } ## ## @seealso{unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps} ## @end deftypefn function pp = mkpp (x, P, d) ## check number of arguments if (nargin < 2 || nargin > 3) print_usage (); endif ## check x if (length (x) < 2) error ("mkpp: at least one interval is needed"); endif if (! isvector (x)) error ("mkpp: x must be a vector"); endif len = length (x) - 1; dP = length (size (P)); pp = struct ("form", "pp", "breaks", x(:).', "coefs", [], "pieces", len, "order", prod (size (P)) / len, "dim", 1); if (nargin == 3) pp.dim = d; pp.order /= prod (d); endif dim_vec = [pp.pieces * prod(pp.dim), pp.order]; pp.coefs = reshape (P, dim_vec); endfunction %!demo # linear interpolation %! x = linspace (0,pi,5)'; %! t = [sin(x), cos(x)]; %! m = diff (t) ./ (x(2)-x(1)); %! b = t(1:4,:); %! pp = mkpp (x, [m(:),b(:)]); %! xi = linspace (0,pi,50); %! plot (x,t,"x", xi,ppval (pp,xi)); %! legend ("control", "interp"); %!shared b,c,pp %! b = 1:3; c = 1:24; pp = mkpp (b,c); %!assert (pp.pieces, 2) %!assert (pp.order, 12) %!assert (pp.dim, 1) %!assert (size (pp.coefs), [2,12]) %! pp = mkpp (b,c,2); %!assert (pp.pieces, 2) %!assert (pp.order, 6) %!assert (pp.dim, 2) %!assert (size (pp.coefs), [4,6]) %! pp = mkpp (b,c,3); %!assert (pp.pieces, 2) %!assert (pp.order, 4) %!assert (pp.dim, 3) %!assert (size (pp.coefs), [6,4]) %! pp = mkpp (b,c,[2,3]); %!assert (pp.pieces, 2) %!assert (pp.order, 2) %!assert (pp.dim, [2,3]) %!assert (size (pp.coefs), [12,2])