Mercurial > hg > octave-nkf
view scripts/polynomial/ppint.m @ 20818:9d2023d1a63c
binoinv.m: Implement binary search algorithm for 28X performance increase (bug #34363).
* binoinv.m: Call new functions scalar_binoinv or vector_binoinv to calculate
binoinv. If there are still uncalculated values then call bin_search_binoinv
to perform binary search for remaining values. Add more BIST tests.
* binoinv.m (scalar_binoinv): New subfunction to calculate binoinv for scalar x.
Stops when x > 1000.
* binoinv.m (vector_binoinv): New subfunction to calculate binoinv for scalar x.
Stops when x > 1000.
author | Lachlan Andrew <lachlanbis@gmail.com> |
---|---|
date | Sun, 11 Oct 2015 19:49:40 -0700 |
parents | f1d0f506ee78 |
children |
line wrap: on
line source
## Copyright (C) 2008-2015 VZLU Prague, a.s., Czech Republic ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## Octave is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{ppi} =} ppint (@var{pp}) ## @deftypefnx {Function File} {@var{ppi} =} ppint (@var{pp}, @var{c}) ## Compute the integral of the piecewise polynomial struct @var{pp}. ## ## @var{c}, if given, is the constant of integration. ## @seealso{mkpp, ppval, ppder} ## @end deftypefn function ppi = ppint (pp, c) if (nargin < 1 || nargin > 2) print_usage (); endif if (! (isstruct (pp) && strcmp (pp.form, "pp"))) error ("ppint: PP must be a structure"); endif [x, p, n, k, d] = unmkpp (pp); p = reshape (p, [], k); ## Get piecewise antiderivatives pi = p / diag (k:-1:1); k += 1; if (nargin == 1) pi(:, k) = 0; else pi(:, k) = repmat (c(:), n, 1); endif ppi = mkpp (x, pi, d); tmp = -cumsum (ppjumps (ppi), length (d) + 1); ppi.coefs(prod (d)+1 : end, k) = tmp(:); endfunction %!shared x,y,pp,ppi %! x = 0:8; %! y = [ ones(size(x)); x+1 ]; %! pp = spline (x, y); %! ppi = ppint (pp); %!assert (ppval (ppi, x), [x; 0.5*x.^2 + x], 1e-14) %!assert (ppi.order, 5)