Mercurial > hg > octave-nkf
view scripts/signal/bartlett.m @ 20818:9d2023d1a63c
binoinv.m: Implement binary search algorithm for 28X performance increase (bug #34363).
* binoinv.m: Call new functions scalar_binoinv or vector_binoinv to calculate
binoinv. If there are still uncalculated values then call bin_search_binoinv
to perform binary search for remaining values. Add more BIST tests.
* binoinv.m (scalar_binoinv): New subfunction to calculate binoinv for scalar x.
Stops when x > 1000.
* binoinv.m (vector_binoinv): New subfunction to calculate binoinv for scalar x.
Stops when x > 1000.
author | Lachlan Andrew <lachlanbis@gmail.com> |
---|---|
date | Sun, 11 Oct 2015 19:49:40 -0700 |
parents | 83792dd9bcc1 |
children |
line wrap: on
line source
## Copyright (C) 1995-2015 Andreas Weingessel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} bartlett (@var{m}) ## Return the filter coefficients of a Bartlett (triangular) window of length ## @var{m}. ## ## For a definition of the Bartlett window see, e.g., ## @nospell{A.V. Oppenheim & R. W. Schafer}, ## @cite{Discrete-Time Signal Processing}. ## @end deftypefn ## Author: AW <Andreas.Weingessel@ci.tuwien.ac.at> ## Description: Coefficients of the Bartlett (triangular) window function c = bartlett (m) if (nargin != 1) print_usage (); endif if (! (isscalar (m) && (m == fix (m)) && (m > 0))) error ("bartlett: M must be a positive integer"); endif if (m == 1) c = 1; else m -= 1; n = fix (m / 2); c = [2*(0:n)/m, 2-2*(n+1:m)/m]'; endif endfunction %!assert (bartlett (1), 1) %!assert (bartlett (2), zeros (2,1)) %!assert (bartlett (15), flip (bartlett (15)), 5*eps) %!assert (bartlett (16), flip (bartlett (16)), 5*eps) %!test %! N = 9; %! A = bartlett (N); %! assert (A(ceil (N/2)), 1); %!error bartlett () %!error bartlett (0.5) %!error bartlett (-1) %!error bartlett (ones (1,4))