Mercurial > hg > octave-nkf
view scripts/statistics/base/kendall.m @ 20818:9d2023d1a63c
binoinv.m: Implement binary search algorithm for 28X performance increase (bug #34363).
* binoinv.m: Call new functions scalar_binoinv or vector_binoinv to calculate
binoinv. If there are still uncalculated values then call bin_search_binoinv
to perform binary search for remaining values. Add more BIST tests.
* binoinv.m (scalar_binoinv): New subfunction to calculate binoinv for scalar x.
Stops when x > 1000.
* binoinv.m (vector_binoinv): New subfunction to calculate binoinv for scalar x.
Stops when x > 1000.
author | Lachlan Andrew <lachlanbis@gmail.com> |
---|---|
date | Sun, 11 Oct 2015 19:49:40 -0700 |
parents | d9341b422488 |
children |
line wrap: on
line source
## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} kendall (@var{x}) ## @deftypefnx {Function File} {} kendall (@var{x}, @var{y}) ## @cindex Kendall's Tau ## Compute Kendall's @var{tau}. ## ## For two data vectors @var{x}, @var{y} of common length @var{n}, Kendall's ## @var{tau} is the correlation of the signs of all rank differences of ## @var{x} and @var{y}; i.e., if both @var{x} and @var{y} have distinct ## entries, then ## ## @tex ## $$ \tau = {1 \over n(n-1)} \sum_{i,j} {\rm sign}(q_i-q_j) {\rm sign}(r_i-r_j) $$ ## @end tex ## @ifnottex ## ## @example ## @group ## 1 ## tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j)) ## n (n-1) i,j ## @end group ## @end example ## ## @end ifnottex ## @noindent ## in which the ## @tex ## $q_i$ and $r_i$ ## @end tex ## @ifnottex ## @var{q}(@var{i}) and @var{r}(@var{i}) ## @end ifnottex ## are the ranks of @var{x} and @var{y}, respectively. ## ## If @var{x} and @var{y} are drawn from independent distributions, ## Kendall's @var{tau} is asymptotically normal with mean 0 and variance ## @tex ## ${2 (2n+5) \over 9n(n-1)}$. ## @end tex ## @ifnottex ## @code{(2 * (2@var{n}+5)) / (9 * @var{n} * (@var{n}-1))}. ## @end ifnottex ## ## @code{kendall (@var{x})} is equivalent to @code{kendall (@var{x}, ## @var{x})}. ## @seealso{ranks, spearman} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Kendall's rank correlation tau function tau = kendall (x, y = []) if (nargin < 1 || nargin > 2) print_usage (); endif if ( ! (isnumeric (x) || islogical (x)) || ! (isnumeric (y) || islogical (y))) error ("kendall: X and Y must be numeric matrices or vectors"); endif if (ndims (x) != 2 || ndims (y) != 2) error ("kendall: X and Y must be 2-D matrices or vectors"); endif if (isrow (x)) x = x.'; endif [n, c] = size (x); if (nargin == 2) if (isrow (y)) y = y.'; endif if (rows (y) != n) error ("kendall: X and Y must have the same number of observations"); else x = [x, y]; endif endif if (isa (x, "single") || isa (y, "single")) cls = "single"; else cls = "double"; endif r = ranks (x); m = sign (kron (r, ones (n, 1, cls)) - kron (ones (n, 1, cls), r)); tau = corr (m); if (nargin == 2) tau = tau(1 : c, (c + 1) : columns (x)); endif endfunction %!test %! x = [1:2:10]; %! y = [100:10:149]; %! assert (kendall (x,y), 1, 5*eps); %! assert (kendall (x,fliplr (y)), -1, 5*eps); %!assert (kendall (logical (1)), 1) %!assert (kendall (single (1)), single (1)) ## Test input validation %!error kendall () %!error kendall (1, 2, 3) %!error kendall (['A'; 'B']) %!error kendall (ones (2,1), ['A'; 'B']) %!error kendall (ones (2,2,2)) %!error kendall (ones (2,2), ones (2,2,2)) %!error kendall (ones (2,2), ones (3,2))