Mercurial > hg > octave-nkf
view src/jit-typeinfo.cc @ 15095:9df70a18aa27
Correct division by zero check in JIT
* src/jit-typeinfo.cc (jit_typinfo::jit_typinfo): Correct division by zero
check.
* src/pt-jit.cc: Add division by zero tests.
author | Max Brister <max@2bass.com> |
---|---|
date | Fri, 03 Aug 2012 10:14:57 -0500 |
parents | fe4752f772e2 |
children |
line wrap: on
line source
/* Copyright (C) 2012 Max Brister <max@2bass.com> This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // defines required by llvm #define __STDC_LIMIT_MACROS #define __STDC_CONSTANT_MACROS #ifdef HAVE_CONFIG_H #include <config.h> #endif #ifdef HAVE_LLVM #include "jit-typeinfo.h" #include <llvm/Analysis/Verifier.h> #include <llvm/GlobalVariable.h> #include <llvm/ExecutionEngine/ExecutionEngine.h> #include <llvm/LLVMContext.h> #include <llvm/Function.h> #include <llvm/Instructions.h> #include <llvm/Intrinsics.h> #include <llvm/Support/IRBuilder.h> #include <llvm/Support/raw_os_ostream.h> #include "jit-ir.h" #include "ov.h" #include "ov-builtin.h" #include "ov-complex.h" #include "ov-scalar.h" #include "pager.h" static llvm::LLVMContext& context = llvm::getGlobalContext (); jit_typeinfo *jit_typeinfo::instance = 0; std::ostream& jit_print (std::ostream& os, jit_type *atype) { if (! atype) return os << "null"; return os << atype->name (); } // function that jit code calls extern "C" void octave_jit_print_any (const char *name, octave_base_value *obv) { obv->print_with_name (octave_stdout, name, true); } extern "C" void octave_jit_print_scalar (const char *name, double value) { // FIXME: We should avoid allocating a new octave_scalar each time octave_value ov (value); ov.print_with_name (octave_stdout, name); } extern "C" octave_base_value* octave_jit_binary_any_any (octave_value::binary_op op, octave_base_value *lhs, octave_base_value *rhs) { octave_value olhs (lhs, true); octave_value orhs (rhs, true); octave_value result = do_binary_op (op, olhs, orhs); octave_base_value *rep = result.internal_rep (); rep->grab (); return rep; } extern "C" octave_idx_type octave_jit_compute_nelem (double base, double limit, double inc) { Range rng = Range (base, limit, inc); return rng.nelem (); } extern "C" void octave_jit_release_any (octave_base_value *obv) { obv->release (); } extern "C" void octave_jit_release_matrix (jit_matrix *m) { delete m->array; } extern "C" octave_base_value * octave_jit_grab_any (octave_base_value *obv) { obv->grab (); return obv; } extern "C" void octave_jit_grab_matrix (jit_matrix *result, jit_matrix *m) { *result = *m->array; } extern "C" octave_base_value * octave_jit_cast_any_matrix (jit_matrix *m) { octave_value ret (*m->array); octave_base_value *rep = ret.internal_rep (); rep->grab (); delete m->array; return rep; } extern "C" void octave_jit_cast_matrix_any (jit_matrix *ret, octave_base_value *obv) { NDArray m = obv->array_value (); *ret = m; obv->release (); } extern "C" octave_base_value * octave_jit_cast_any_range (jit_range *rng) { Range temp (*rng); octave_value ret (temp); octave_base_value *rep = ret.internal_rep (); rep->grab (); return rep; } extern "C" void octave_jit_cast_range_any (jit_range *ret, octave_base_value *obv) { jit_range r (obv->range_value ()); *ret = r; obv->release (); } extern "C" double octave_jit_cast_scalar_any (octave_base_value *obv) { double ret = obv->double_value (); obv->release (); return ret; } extern "C" octave_base_value * octave_jit_cast_any_scalar (double value) { return new octave_scalar (value); } extern "C" Complex octave_jit_cast_complex_any (octave_base_value *obv) { Complex ret = obv->complex_value (); obv->release (); return ret; } extern "C" octave_base_value * octave_jit_cast_any_complex (Complex c) { if (c.imag () == 0) return new octave_scalar (c.real ()); else return new octave_complex (c); } extern "C" void octave_jit_gripe_nan_to_logical_conversion (void) { try { gripe_nan_to_logical_conversion (); } catch (const octave_execution_exception&) { gripe_library_execution_error (); } } extern "C" void octave_jit_ginvalid_index (void) { try { gripe_invalid_index (); } catch (const octave_execution_exception&) { gripe_library_execution_error (); } } extern "C" void octave_jit_gindex_range (int nd, int dim, octave_idx_type iext, octave_idx_type ext) { try { gripe_index_out_of_range (nd, dim, iext, ext); } catch (const octave_execution_exception&) { gripe_library_execution_error (); } } extern "C" void octave_jit_paren_subsasgn_impl (jit_matrix *ret, jit_matrix *mat, octave_idx_type index, double value) { NDArray *array = mat->array; if (array->nelem () < index) array->resize1 (index); double *data = array->fortran_vec (); data[index - 1] = value; mat->update (); *ret = *mat; } static void make_indices (double *indices, octave_idx_type idx_count, Array<idx_vector>& result) { result.resize (dim_vector (1, idx_count)); for (octave_idx_type i = 0; i < idx_count; ++i) result(i) = idx_vector (indices[i]); } extern "C" double octave_jit_paren_scalar (jit_matrix *mat, double *indicies, octave_idx_type idx_count) { // FIXME: Replace this with a more optimal version try { Array<idx_vector> idx; make_indices (indicies, idx_count, idx); Array<double> ret = mat->array->index (idx); return ret.xelem (0); } catch (const octave_execution_exception&) { gripe_library_execution_error (); return 0; } } extern "C" void octave_jit_paren_scalar_subsasgn (jit_matrix *ret, jit_matrix *mat, double *indices, octave_idx_type idx_count, double value) { // FIXME: Replace this with a more optimal version try { Array<idx_vector> idx; make_indices (indices, idx_count, idx); Matrix temp (1, 1); temp.xelem(0) = value; mat->array->assign (idx, temp); ret->update (mat->array); } catch (const octave_execution_exception&) { gripe_library_execution_error (); } } extern "C" void octave_jit_paren_subsasgn_matrix_range (jit_matrix *result, jit_matrix *mat, jit_range *index, double value) { NDArray *array = mat->array; bool done = false; // optimize for the simple case (no resizing and no errors) if (*array->jit_ref_count () == 1 && index->all_elements_are_ints ()) { // this code is similar to idx_vector::fill, but we avoid allocating an // idx_vector and its associated rep octave_idx_type start = static_cast<octave_idx_type> (index->base) - 1; octave_idx_type step = static_cast<octave_idx_type> (index->inc); octave_idx_type nelem = index->nelem; octave_idx_type final = start + nelem * step; if (step < 0) { step = -step; std::swap (final, start); } if (start >= 0 && final < mat->slice_len) { done = true; double *data = array->jit_slice_data (); if (step == 1) std::fill (data + start, data + start + nelem, value); else { for (octave_idx_type i = start; i < final; i += step) data[i] = value; } } } if (! done) { idx_vector idx (*index); NDArray avalue (dim_vector (1, 1)); avalue.xelem (0) = value; array->assign (idx, avalue); } result->update (array); } extern "C" Complex octave_jit_complex_div (Complex lhs, Complex rhs) { // see src/OPERATORS/op-cs-cs.cc if (rhs == 0.0) gripe_divide_by_zero (); return lhs / rhs; } // FIXME: CP form src/xpow.cc static inline int xisint (double x) { return (D_NINT (x) == x && ((x >= 0 && x < INT_MAX) || (x <= 0 && x > INT_MIN))); } extern "C" Complex octave_jit_pow_scalar_scalar (double lhs, double rhs) { // FIXME: almost CP from src/xpow.cc if (lhs < 0.0 && ! xisint (rhs)) return std::pow (Complex (lhs), rhs); return std::pow (lhs, rhs); } extern "C" Complex octave_jit_pow_complex_complex (Complex lhs, Complex rhs) { if (lhs.imag () == 0 && rhs.imag () == 0) return octave_jit_pow_scalar_scalar (lhs.real (), rhs.real ()); return std::pow (lhs, rhs); } extern "C" Complex octave_jit_pow_complex_scalar (Complex lhs, double rhs) { if (lhs.imag () == 0) return octave_jit_pow_scalar_scalar (lhs.real (), rhs); return std::pow (lhs, rhs); } extern "C" Complex octave_jit_pow_scalar_complex (double lhs, Complex rhs) { if (rhs.imag () == 0) return octave_jit_pow_scalar_scalar (lhs, rhs.real ()); return std::pow (lhs, rhs); } extern "C" void octave_jit_print_matrix (jit_matrix *m) { std::cout << *m << std::endl; } static void gripe_bad_result (void) { error ("incorrect type information given to the JIT compiler"); } // FIXME: Add support for multiple outputs extern "C" octave_base_value * octave_jit_call (octave_builtin::fcn fn, size_t nargin, octave_base_value **argin, jit_type *result_type) { octave_value_list ovl (nargin); for (size_t i = 0; i < nargin; ++i) ovl.xelem (i) = octave_value (argin[i]); ovl = fn (ovl, 1); // These type checks are not strictly required, but I'm guessing that // incorrect types will be entered on occasion. This will be very difficult to // debug unless we do the sanity check here. if (result_type) { if (ovl.length () != 1) { gripe_bad_result (); return 0; } octave_value& result = ovl.xelem (0); jit_type *jtype = jit_typeinfo::join (jit_typeinfo::type_of (result), result_type); if (jtype != result_type) { gripe_bad_result (); return 0; } octave_base_value *ret = result.internal_rep (); ret->grab (); return ret; } if (! (ovl.length () == 0 || (ovl.length () == 1 && ovl.xelem (0).is_undefined ()))) gripe_bad_result (); return 0; } // -------------------- jit_range -------------------- bool jit_range::all_elements_are_ints () const { Range r (*this); return r.all_elements_are_ints (); } std::ostream& operator<< (std::ostream& os, const jit_range& rng) { return os << "Range[" << rng.base << ", " << rng.limit << ", " << rng.inc << ", " << rng.nelem << "]"; } // -------------------- jit_matrix -------------------- std::ostream& operator<< (std::ostream& os, const jit_matrix& mat) { return os << "Matrix[" << mat.ref_count << ", " << mat.slice_data << ", " << mat.slice_len << ", " << mat.dimensions << ", " << mat.array << "]"; } // -------------------- jit_type -------------------- jit_type::jit_type (const std::string& aname, jit_type *aparent, llvm::Type *allvm_type, int aid) : mname (aname), mparent (aparent), llvm_type (allvm_type), mid (aid), mdepth (aparent ? aparent->mdepth + 1 : 0) { std::memset (msret, 0, sizeof (msret)); std::memset (mpointer_arg, 0, sizeof (mpointer_arg)); std::memset (mpack, 0, sizeof (mpack)); std::memset (munpack, 0, sizeof (munpack)); for (size_t i = 0; i < jit_convention::length; ++i) mpacked_type[i] = llvm_type; } llvm::Type * jit_type::to_llvm_arg (void) const { return llvm_type ? llvm_type->getPointerTo () : 0; } // -------------------- jit_function -------------------- jit_function::jit_function () : module (0), llvm_function (0), mresult (0), call_conv (jit_convention::length), mcan_error (false) {} jit_function::jit_function (llvm::Module *amodule, jit_convention::type acall_conv, const llvm::Twine& aname, jit_type *aresult, const std::vector<jit_type *>& aargs) : module (amodule), mresult (aresult), args (aargs), call_conv (acall_conv), mcan_error (false) { llvm::SmallVector<llvm::Type *, 15> llvm_args; llvm::Type *rtype = llvm::Type::getVoidTy (context); if (mresult) { rtype = mresult->packed_type (call_conv); if (sret ()) { llvm_args.push_back (rtype->getPointerTo ()); rtype = llvm::Type::getVoidTy (context); } } for (std::vector<jit_type *>::const_iterator iter = args.begin (); iter != args.end (); ++iter) { jit_type *ty = *iter; assert (ty); llvm::Type *argty = ty->packed_type (call_conv); if (ty->pointer_arg (call_conv)) argty = argty->getPointerTo (); llvm_args.push_back (argty); } // we mark all functinos as external linkage because this prevents llvm // from getting rid of always inline functions llvm::FunctionType *ft = llvm::FunctionType::get (rtype, llvm_args, false); llvm_function = llvm::Function::Create (ft, llvm::Function::ExternalLinkage, aname, module); if (call_conv == jit_convention::internal) llvm_function->addFnAttr (llvm::Attribute::AlwaysInline); } jit_function::jit_function (const jit_function& fn, jit_type *aresult, const std::vector<jit_type *>& aargs) : module (fn.module), llvm_function (fn.llvm_function), mresult (aresult), args (aargs), call_conv (fn.call_conv), mcan_error (fn.mcan_error) { } jit_function::jit_function (const jit_function& fn) : module (fn.module), llvm_function (fn.llvm_function), mresult (fn.mresult), args (fn.args), call_conv (fn.call_conv), mcan_error (fn.mcan_error) {} std::string jit_function::name (void) const { return llvm_function->getName (); } llvm::BasicBlock * jit_function::new_block (const std::string& aname, llvm::BasicBlock *insert_before) { return llvm::BasicBlock::Create (context, aname, llvm_function, insert_before); } llvm::Value * jit_function::call (llvm::IRBuilderD& builder, const std::vector<jit_value *>& in_args) const { if (! valid ()) throw jit_fail_exception ("Call not implemented"); assert (in_args.size () == args.size ()); std::vector<llvm::Value *> llvm_args (args.size ()); for (size_t i = 0; i < in_args.size (); ++i) llvm_args[i] = in_args[i]->to_llvm (); return call (builder, llvm_args); } llvm::Value * jit_function::call (llvm::IRBuilderD& builder, const std::vector<llvm::Value *>& in_args) const { if (! valid ()) throw jit_fail_exception ("Call not implemented"); assert (in_args.size () == args.size ()); llvm::Function *stacksave = llvm::Intrinsic::getDeclaration (module, llvm::Intrinsic::stacksave); llvm::SmallVector<llvm::Value *, 10> llvm_args; llvm_args.reserve (in_args.size () + sret ()); llvm::Value *sret_mem = 0; llvm::Value *saved_stack = 0; if (sret ()) { saved_stack = builder.CreateCall (stacksave); sret_mem = builder.CreateAlloca (mresult->packed_type (call_conv)); llvm_args.push_back (sret_mem); } for (size_t i = 0; i < in_args.size (); ++i) { llvm::Value *arg = in_args[i]; jit_type::convert_fn convert = args[i]->pack (call_conv); if (convert) arg = convert (builder, arg); if (args[i]->pointer_arg (call_conv)) { if (! saved_stack) saved_stack = builder.CreateCall (stacksave); arg = builder.CreateAlloca (args[i]->to_llvm ()); builder.CreateStore (in_args[i], arg); } llvm_args.push_back (arg); } llvm::Value *ret = builder.CreateCall (llvm_function, llvm_args); if (sret_mem) ret = builder.CreateLoad (sret_mem); if (mresult) { jit_type::convert_fn unpack = mresult->unpack (call_conv); if (unpack) ret = unpack (builder, ret); } if (saved_stack) { llvm::Function *stackrestore = llvm::Intrinsic::getDeclaration (module, llvm::Intrinsic::stackrestore); builder.CreateCall (stackrestore, saved_stack); } return ret; } llvm::Value * jit_function::argument (llvm::IRBuilderD& builder, size_t idx) const { assert (idx < args.size ()); // FIXME: We should be treating arguments like a list, not a vector. Shouldn't // matter much for now, as the number of arguments shouldn't be much bigger // than 4 llvm::Function::arg_iterator iter = llvm_function->arg_begin (); if (sret ()) ++iter; for (size_t i = 0; i < idx; ++i, ++iter); if (args[idx]->pointer_arg (call_conv)) return builder.CreateLoad (iter); return iter; } void jit_function::do_return (llvm::IRBuilderD& builder, llvm::Value *rval) { assert (! rval == ! mresult); if (rval) { jit_type::convert_fn convert = mresult->pack (call_conv); if (convert) rval = convert (builder, rval); if (sret ()) builder.CreateStore (rval, llvm_function->arg_begin ()); else builder.CreateRet (rval); } else builder.CreateRetVoid (); llvm::verifyFunction (*llvm_function); } void jit_function::do_add_mapping (llvm::ExecutionEngine *engine, void *fn) { assert (valid ()); engine->addGlobalMapping (llvm_function, fn); } std::ostream& operator<< (std::ostream& os, const jit_function& fn) { llvm::Function *lfn = fn.to_llvm (); os << "jit_function: cc=" << fn.call_conv; llvm::raw_os_ostream llvm_out (os); lfn->print (llvm_out); llvm_out.flush (); return os; } // -------------------- jit_operation -------------------- jit_operation::~jit_operation (void) { for (generated_map::iterator iter = generated.begin (); iter != generated.end (); ++iter) { delete iter->first; delete iter->second; } } void jit_operation::add_overload (const jit_function& func, const std::vector<jit_type*>& args) { if (args.size () >= overloads.size ()) overloads.resize (args.size () + 1); Array<jit_function>& over = overloads[args.size ()]; dim_vector dv (over.dims ()); Array<octave_idx_type> idx = to_idx (args); bool must_resize = false; if (dv.length () != idx.numel ()) { dv.resize (idx.numel ()); must_resize = true; } for (octave_idx_type i = 0; i < dv.length (); ++i) if (dv(i) <= idx(i)) { must_resize = true; dv(i) = idx(i) + 1; } if (must_resize) over.resize (dv); over(idx) = func; } const jit_function& jit_operation::overload (const std::vector<jit_type*>& types) const { static jit_function null_overload; for (size_t i =0; i < types.size (); ++i) if (! types[i]) return null_overload; if (types.size () >= overloads.size ()) return do_generate (types); const Array<jit_function>& over = overloads[types.size ()]; dim_vector dv (over.dims ()); Array<octave_idx_type> idx = to_idx (types); for (octave_idx_type i = 0; i < dv.length (); ++i) if (idx(i) >= dv(i)) return do_generate (types); const jit_function& ret = over(idx); if (! ret.valid ()) return do_generate (types); return ret; } Array<octave_idx_type> jit_operation::to_idx (const std::vector<jit_type*>& types) const { octave_idx_type numel = types.size (); if (numel == 1) numel = 2; Array<octave_idx_type> idx (dim_vector (1, numel)); for (octave_idx_type i = 0; i < static_cast<octave_idx_type> (types.size ()); ++i) idx(i) = types[i]->type_id (); if (types.size () == 1) { idx(1) = idx(0); idx(0) = 0; } return idx; } const jit_function& jit_operation::do_generate (const signature_vec& types) const { static jit_function null_overload; generated_map::const_iterator find = generated.find (&types); if (find != generated.end ()) { if (find->second) return *find->second; else return null_overload; } jit_function *ret = generate (types); generated[new signature_vec (types)] = ret; return ret ? *ret : null_overload; } jit_function * jit_operation::generate (const signature_vec& types) const { return 0; } bool jit_operation::signature_cmp ::operator() (const signature_vec *lhs, const signature_vec *rhs) { const signature_vec& l = *lhs; const signature_vec& r = *rhs; if (l.size () < r.size ()) return true; else if (l.size () > r.size ()) return false; for (size_t i = 0; i < l.size (); ++i) { if (l[i]->type_id () < r[i]->type_id ()) return true; else if (l[i]->type_id () > r[i]->type_id ()) return false; } return false; } // -------------------- jit_index_operation -------------------- jit_function * jit_index_operation::generate (const signature_vec& types) const { if (types.size () > 2 && types[0] == jit_typeinfo::get_matrix ()) { // indexing a matrix with scalars jit_type *scalar = jit_typeinfo::get_scalar (); for (size_t i = 1; i < types.size (); ++i) if (types[i] != scalar) return 0; return generate_matrix (types); } return 0; } llvm::Value * jit_index_operation::create_arg_array (llvm::IRBuilderD& builder, const jit_function &fn, size_t start_idx, size_t end_idx) const { size_t n = end_idx - start_idx; llvm::Type *scalar_t = jit_typeinfo::get_scalar_llvm (); llvm::ArrayType *array_t = llvm::ArrayType::get (scalar_t, n); llvm::Value *array = llvm::UndefValue::get (array_t); for (size_t i = start_idx; i < end_idx; ++i) { llvm::Value *idx = fn.argument (builder, i); array = builder.CreateInsertValue (array, idx, i - start_idx); } llvm::Value *array_mem = builder.CreateAlloca (array_t); builder.CreateStore (array, array_mem); return builder.CreateBitCast (array_mem, scalar_t->getPointerTo ()); } // -------------------- jit_paren_subsref -------------------- jit_function * jit_paren_subsref::generate_matrix (const signature_vec& types) const { std::stringstream ss; ss << "jit_paren_subsref_matrix_scalar" << (types.size () - 1); jit_type *scalar = jit_typeinfo::get_scalar (); jit_function *fn = new jit_function (module, jit_convention::internal, ss.str (), scalar, types); fn->mark_can_error (); llvm::BasicBlock *body = fn->new_block (); llvm::IRBuilder<> builder (body); llvm::Value *array = create_arg_array (builder, *fn, 1, types.size ()); jit_type *index = jit_typeinfo::get_index (); llvm::Value *nelem = llvm::ConstantInt::get (index->to_llvm (), types.size () - 1); llvm::Value *mat = fn->argument (builder, 0); llvm::Value *ret = paren_scalar.call (builder, mat, array, nelem); fn->do_return (builder, ret); return fn; } void jit_paren_subsref::do_initialize (void) { std::vector<jit_type *> types (3); types[0] = jit_typeinfo::get_matrix (); types[1] = jit_typeinfo::get_scalar_ptr (); types[2] = jit_typeinfo::get_index (); jit_type *scalar = jit_typeinfo::get_scalar (); paren_scalar = jit_function (module, jit_convention::external, "octave_jit_paren_scalar", scalar, types); paren_scalar.add_mapping (engine, &octave_jit_paren_scalar); paren_scalar.mark_can_error (); } // -------------------- jit_paren_subsasgn -------------------- jit_function * jit_paren_subsasgn::generate_matrix (const signature_vec& types) const { std::stringstream ss; ss << "jit_paren_subsasgn_matrix_scalar" << (types.size () - 2); jit_type *matrix = jit_typeinfo::get_matrix (); jit_function *fn = new jit_function (module, jit_convention::internal, ss.str (), matrix, types); fn->mark_can_error (); llvm::BasicBlock *body = fn->new_block (); llvm::IRBuilder<> builder (body); llvm::Value *array = create_arg_array (builder, *fn, 1, types.size () - 1); jit_type *index = jit_typeinfo::get_index (); llvm::Value *nelem = llvm::ConstantInt::get (index->to_llvm (), types.size () - 2); llvm::Value *mat = fn->argument (builder, 0); llvm::Value *value = fn->argument (builder, types.size () - 1); llvm::Value *ret = paren_scalar.call (builder, mat, array, nelem, value); fn->do_return (builder, ret); return fn; } void jit_paren_subsasgn::do_initialize (void) { if (paren_scalar.valid ()) return; jit_type *matrix = jit_typeinfo::get_matrix (); std::vector<jit_type *> types (4); types[0] = matrix; types[1] = jit_typeinfo::get_scalar_ptr (); types[2] = jit_typeinfo::get_index (); types[3] = jit_typeinfo::get_scalar (); paren_scalar = jit_function (module, jit_convention::external, "octave_jit_paren_scalar", matrix, types); paren_scalar.add_mapping (engine, &octave_jit_paren_scalar_subsasgn); paren_scalar.mark_can_error (); } // -------------------- jit_typeinfo -------------------- void jit_typeinfo::initialize (llvm::Module *m, llvm::ExecutionEngine *e) { new jit_typeinfo (m, e); } jit_typeinfo::jit_typeinfo (llvm::Module *m, llvm::ExecutionEngine *e) : module (m), engine (e), next_id (0), builder (*new llvm::IRBuilderD (context)) { instance = this; // FIXME: We should be registering types like in octave_value_typeinfo llvm::Type *any_t = llvm::StructType::create (context, "octave_base_value"); any_t = any_t->getPointerTo (); llvm::Type *scalar_t = llvm::Type::getDoubleTy (context); llvm::Type *bool_t = llvm::Type::getInt1Ty (context); llvm::Type *string_t = llvm::Type::getInt8Ty (context); string_t = string_t->getPointerTo (); llvm::Type *index_t = llvm::Type::getIntNTy (context, sizeof(octave_idx_type) * 8); llvm::StructType *range_t = llvm::StructType::create (context, "range"); std::vector<llvm::Type *> range_contents (4, scalar_t); range_contents[3] = index_t; range_t->setBody (range_contents); llvm::Type *refcount_t = llvm::Type::getIntNTy (context, sizeof(int) * 8); llvm::StructType *matrix_t = llvm::StructType::create (context, "matrix"); llvm::Type *matrix_contents[5]; matrix_contents[0] = refcount_t->getPointerTo (); matrix_contents[1] = scalar_t->getPointerTo (); matrix_contents[2] = index_t; matrix_contents[3] = index_t->getPointerTo (); matrix_contents[4] = string_t; matrix_t->setBody (llvm::makeArrayRef (matrix_contents, 5)); llvm::Type *complex_t = llvm::VectorType::get (scalar_t, 2); // complex_ret is what is passed to C functions in order to get calling // convention right complex_ret = llvm::StructType::create (context, "complex_ret"); llvm::Type *complex_ret_contents[] = {scalar_t, scalar_t}; complex_ret->setBody (complex_ret_contents); // create types any = new_type ("any", 0, any_t); matrix = new_type ("matrix", any, matrix_t); complex = new_type ("complex", any, complex_t); scalar = new_type ("scalar", complex, scalar_t); scalar_ptr = new_type ("scalar_ptr", 0, scalar_t->getPointerTo ()); range = new_type ("range", any, range_t); string = new_type ("string", any, string_t); boolean = new_type ("bool", any, bool_t); index = new_type ("index", any, index_t); create_int (8); create_int (16); create_int (32); create_int (64); casts.resize (next_id + 1); identities.resize (next_id + 1); // specify calling conventions // FIXME: We should detect architecture and do something sane based on that // here we assume x86 or x86_64 matrix->mark_sret (); matrix->mark_pointer_arg (); range->mark_sret (); range->mark_pointer_arg (); complex->set_pack (jit_convention::external, &jit_typeinfo::pack_complex); complex->set_unpack (jit_convention::external, &jit_typeinfo::unpack_complex); complex->set_packed_type (jit_convention::external, complex_ret); if (sizeof (void *) == 4) complex->mark_sret (); paren_subsref_fn.initialize (module, engine); paren_subsasgn_fn.initialize (module, engine); // bind global variables lerror_state = new llvm::GlobalVariable (*module, bool_t, false, llvm::GlobalValue::ExternalLinkage, 0, "error_state"); engine->addGlobalMapping (lerror_state, reinterpret_cast<void *> (&error_state)); // any with anything is an any op jit_function fn; jit_type *binary_op_type = intN (sizeof (octave_value::binary_op) * 8); llvm::Type *llvm_bo_type = binary_op_type->to_llvm (); jit_function any_binary = create_function (jit_convention::external, "octave_jit_binary_any_any", any, binary_op_type, any, any); any_binary.add_mapping (engine, &octave_jit_binary_any_any); any_binary.mark_can_error (); binary_ops.resize (octave_value::num_binary_ops); for (size_t i = 0; i < octave_value::num_binary_ops; ++i) { octave_value::binary_op op = static_cast<octave_value::binary_op> (i); std::string op_name = octave_value::binary_op_as_string (op); binary_ops[i].stash_name ("binary" + op_name); } for (int op = 0; op < octave_value::num_binary_ops; ++op) { llvm::Twine fn_name ("octave_jit_binary_any_any_"); fn_name = fn_name + llvm::Twine (op); fn = create_function (jit_convention::internal, fn_name, any, any, any); fn.mark_can_error (); llvm::BasicBlock *block = fn.new_block (); builder.SetInsertPoint (block); llvm::APInt op_int(sizeof (octave_value::binary_op) * 8, op, std::numeric_limits<octave_value::binary_op>::is_signed); llvm::Value *op_as_llvm = llvm::ConstantInt::get (llvm_bo_type, op_int); llvm::Value *ret = any_binary.call (builder, op_as_llvm, fn.argument (builder, 0), fn.argument (builder, 1)); fn.do_return (builder, ret); binary_ops[op].add_overload (fn); } // grab any fn = create_function (jit_convention::external, "octave_jit_grab_any", any, any); fn.add_mapping (engine, &octave_jit_grab_any); grab_fn.add_overload (fn); grab_fn.stash_name ("grab"); // grab matrix fn = create_function (jit_convention::external, "octave_jit_grab_matrix", matrix, matrix); fn.add_mapping (engine, &octave_jit_grab_matrix); grab_fn.add_overload (fn); // release any fn = create_function (jit_convention::external, "octave_jit_release_any", 0, any); fn.add_mapping (engine, &octave_jit_release_any); release_fn.add_overload (fn); release_fn.stash_name ("release"); // release matrix fn = create_function (jit_convention::external, "octave_jit_release_matrix", 0, matrix); fn.add_mapping (engine, &octave_jit_release_matrix); release_fn.add_overload (fn); // release scalar fn = create_identity (scalar); release_fn.add_overload (fn); // release complex fn = create_identity (complex); release_fn.add_overload (fn); // release index fn = create_identity (index); release_fn.add_overload (fn); // now for binary scalar operations // FIXME: Finish all operations add_binary_op (scalar, octave_value::op_add, llvm::Instruction::FAdd); add_binary_op (scalar, octave_value::op_sub, llvm::Instruction::FSub); add_binary_op (scalar, octave_value::op_mul, llvm::Instruction::FMul); add_binary_op (scalar, octave_value::op_el_mul, llvm::Instruction::FMul); add_binary_fcmp (scalar, octave_value::op_lt, llvm::CmpInst::FCMP_ULT); add_binary_fcmp (scalar, octave_value::op_le, llvm::CmpInst::FCMP_ULE); add_binary_fcmp (scalar, octave_value::op_eq, llvm::CmpInst::FCMP_UEQ); add_binary_fcmp (scalar, octave_value::op_ge, llvm::CmpInst::FCMP_UGE); add_binary_fcmp (scalar, octave_value::op_gt, llvm::CmpInst::FCMP_UGT); add_binary_fcmp (scalar, octave_value::op_ne, llvm::CmpInst::FCMP_UNE); jit_function gripe_div0 = create_function (jit_convention::external, "gripe_divide_by_zero", 0); gripe_div0.add_mapping (engine, &gripe_divide_by_zero); gripe_div0.mark_can_error (); // divide is annoying because it might error fn = create_function (jit_convention::internal, "octave_jit_div_scalar_scalar", scalar, scalar, scalar); fn.mark_can_error (); llvm::BasicBlock *body = fn.new_block (); builder.SetInsertPoint (body); { llvm::BasicBlock *warn_block = fn.new_block ("warn"); llvm::BasicBlock *normal_block = fn.new_block ("normal"); llvm::Value *zero = llvm::ConstantFP::get (scalar_t, 0); llvm::Value *check = builder.CreateFCmpUEQ (zero, fn.argument (builder, 1)); builder.CreateCondBr (check, warn_block, normal_block); builder.SetInsertPoint (warn_block); gripe_div0.call (builder); builder.CreateBr (normal_block); builder.SetInsertPoint (normal_block); llvm::Value *ret = builder.CreateFDiv (fn.argument (builder, 0), fn.argument (builder, 1)); fn.do_return (builder, ret); } binary_ops[octave_value::op_div].add_overload (fn); binary_ops[octave_value::op_el_div].add_overload (fn); // ldiv is the same as div with the operators reversed fn = mirror_binary (fn); binary_ops[octave_value::op_ldiv].add_overload (fn); binary_ops[octave_value::op_el_ldiv].add_overload (fn); // In general, the result of scalar ^ scalar is a complex number. We might be // able to improve on this if we keep track of the range of values varaibles // can take on. fn = create_function (jit_convention::external, "octave_jit_pow_scalar_scalar", complex, scalar, scalar); fn.add_mapping (engine, &octave_jit_pow_scalar_scalar); binary_ops[octave_value::op_pow].add_overload (fn); binary_ops[octave_value::op_el_pow].add_overload (fn); // now for binary complex operations add_binary_op (complex, octave_value::op_add, llvm::Instruction::FAdd); add_binary_op (complex, octave_value::op_sub, llvm::Instruction::FSub); fn = create_function (jit_convention::internal, "octave_jit_*_complex_complex", complex, complex, complex); body = fn.new_block (); builder.SetInsertPoint (body); { // (x0*x1 - y0*y1, x0*y1 + y0*x1) = (x0,y0) * (x1,y1) // We compute this in one vectorized multiplication, a subtraction, and an // addition. llvm::Value *lhs = fn.argument (builder, 0); llvm::Value *rhs = fn.argument (builder, 1); // FIXME: We need a better way of doing this, working with llvm's IR // directly is sort of a pain. llvm::Value *zero = builder.getInt32 (0); llvm::Value *one = builder.getInt32 (1); llvm::Value *two = builder.getInt32 (2); llvm::Value *three = builder.getInt32 (3); llvm::Type *vec4 = llvm::VectorType::get (scalar_t, 4); llvm::Value *mlhs = llvm::UndefValue::get (vec4); llvm::Value *mrhs = mlhs; llvm::Value *temp = complex_real (lhs); mlhs = builder.CreateInsertElement (mlhs, temp, zero); mlhs = builder.CreateInsertElement (mlhs, temp, two); temp = complex_imag (lhs); mlhs = builder.CreateInsertElement (mlhs, temp, one); mlhs = builder.CreateInsertElement (mlhs, temp, three); temp = complex_real (rhs); mrhs = builder.CreateInsertElement (mrhs, temp, zero); mrhs = builder.CreateInsertElement (mrhs, temp, three); temp = complex_imag (rhs); mrhs = builder.CreateInsertElement (mrhs, temp, one); mrhs = builder.CreateInsertElement (mrhs, temp, two); llvm::Value *mres = builder.CreateFMul (mlhs, mrhs); llvm::Value *tlhs = builder.CreateExtractElement (mres, zero); llvm::Value *trhs = builder.CreateExtractElement (mres, one); llvm::Value *ret_real = builder.CreateFSub (tlhs, trhs); tlhs = builder.CreateExtractElement (mres, two); trhs = builder.CreateExtractElement (mres, three); llvm::Value *ret_imag = builder.CreateFAdd (tlhs, trhs); fn.do_return (builder, complex_new (ret_real, ret_imag)); } binary_ops[octave_value::op_mul].add_overload (fn); binary_ops[octave_value::op_el_mul].add_overload (fn); jit_function complex_div = create_function (jit_convention::external, "octave_jit_complex_div", complex, complex, complex); complex_div.add_mapping (engine, &octave_jit_complex_div); complex_div.mark_can_error (); binary_ops[octave_value::op_div].add_overload (fn); binary_ops[octave_value::op_ldiv].add_overload (fn); fn = mirror_binary (complex_div); binary_ops[octave_value::op_ldiv].add_overload (fn); binary_ops[octave_value::op_el_ldiv].add_overload (fn); fn = create_function (jit_convention::external, "octave_jit_pow_complex_complex", complex, complex, complex); fn.add_mapping (engine, &octave_jit_pow_complex_complex); binary_ops[octave_value::op_pow].add_overload (fn); binary_ops[octave_value::op_el_pow].add_overload (fn); fn = create_function (jit_convention::internal, "octave_jit_*_scalar_complex", complex, scalar, complex); jit_function mul_scalar_complex = fn; body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *lhs = fn.argument (builder, 0); llvm::Value *tlhs = complex_new (lhs, lhs); llvm::Value *rhs = fn.argument (builder, 1); fn.do_return (builder, builder.CreateFMul (tlhs, rhs)); } binary_ops[octave_value::op_mul].add_overload (fn); binary_ops[octave_value::op_el_mul].add_overload (fn); fn = mirror_binary (mul_scalar_complex); binary_ops[octave_value::op_mul].add_overload (fn); binary_ops[octave_value::op_el_mul].add_overload (fn); fn = create_function (jit_convention::internal, "octave_jit_+_scalar_complex", complex, scalar, complex); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *lhs = fn.argument (builder, 0); llvm::Value *rhs = fn.argument (builder, 1); llvm::Value *real = builder.CreateFAdd (lhs, complex_real (rhs)); fn.do_return (builder, complex_real (rhs, real)); } binary_ops[octave_value::op_add].add_overload (fn); fn = mirror_binary (fn); binary_ops[octave_value::op_add].add_overload (fn); fn = create_function (jit_convention::internal, "octave_jit_-_complex_scalar", complex, complex, scalar); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *lhs = fn.argument (builder, 0); llvm::Value *rhs = fn.argument (builder, 1); llvm::Value *real = builder.CreateFSub (complex_real (lhs), rhs); fn.do_return (builder, complex_real (lhs, real)); } binary_ops[octave_value::op_sub].add_overload (fn); fn = create_function (jit_convention::internal, "octave_jit_-_scalar_complex", complex, scalar, complex); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *lhs = fn.argument (builder, 0); llvm::Value *rhs = fn.argument (builder, 1); llvm::Value *real = builder.CreateFSub (lhs, complex_real (rhs)); fn.do_return (builder, complex_real (rhs, real)); } binary_ops[octave_value::op_sub].add_overload (fn); fn = create_function (jit_convention::external, "octave_jit_pow_scalar_complex", complex, scalar, complex); fn.add_mapping (engine, &octave_jit_pow_scalar_complex); binary_ops[octave_value::op_pow].add_overload (fn); binary_ops[octave_value::op_el_pow].add_overload (fn); fn = create_function (jit_convention::external, "octave_jit_pow_complex_scalar", complex, complex, scalar); fn.add_mapping (engine, &octave_jit_pow_complex_scalar); binary_ops[octave_value::op_pow].add_overload (fn); binary_ops[octave_value::op_el_pow].add_overload (fn); // now for binary index operators add_binary_op (index, octave_value::op_add, llvm::Instruction::Add); // and binary bool operators add_binary_op (boolean, octave_value::op_el_or, llvm::Instruction::Or); add_binary_op (boolean, octave_value::op_el_and, llvm::Instruction::And); // now for printing functions print_fn.stash_name ("print"); add_print (any, reinterpret_cast<void *> (&octave_jit_print_any)); add_print (scalar, reinterpret_cast<void *> (&octave_jit_print_scalar)); // initialize for loop for_init_fn.stash_name ("for_init"); fn = create_function (jit_convention::internal, "octave_jit_for_range_init", index, range); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *zero = llvm::ConstantInt::get (index_t, 0); fn.do_return (builder, zero); } for_init_fn.add_overload (fn); // bounds check for for loop for_check_fn.stash_name ("for_check"); fn = create_function (jit_convention::internal, "octave_jit_for_range_check", boolean, range, index); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *nelem = builder.CreateExtractValue (fn.argument (builder, 0), 3); llvm::Value *idx = fn.argument (builder, 1); llvm::Value *ret = builder.CreateICmpULT (idx, nelem); fn.do_return (builder, ret); } for_check_fn.add_overload (fn); // index variabe for for loop for_index_fn.stash_name ("for_index"); fn = create_function (jit_convention::internal, "octave_jit_for_range_idx", scalar, range, index); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *idx = fn.argument (builder, 1); llvm::Value *didx = builder.CreateSIToFP (idx, scalar_t); llvm::Value *rng = fn.argument (builder, 0); llvm::Value *base = builder.CreateExtractValue (rng, 0); llvm::Value *inc = builder.CreateExtractValue (rng, 2); llvm::Value *ret = builder.CreateFMul (didx, inc); ret = builder.CreateFAdd (base, ret); fn.do_return (builder, ret); } for_index_fn.add_overload (fn); // logically true logically_true_fn.stash_name ("logically_true"); jit_function gripe_nantl = create_function (jit_convention::external, "octave_jit_gripe_nan_to_logical_conversion", 0); gripe_nantl.add_mapping (engine, &octave_jit_gripe_nan_to_logical_conversion); gripe_nantl.mark_can_error (); fn = create_function (jit_convention::internal, "octave_jit_logically_true_scalar", boolean, scalar); fn.mark_can_error (); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::BasicBlock *error_block = fn.new_block ("error"); llvm::BasicBlock *normal_block = fn.new_block ("normal"); llvm::Value *check = builder.CreateFCmpUNE (fn.argument (builder, 0), fn.argument (builder, 0)); builder.CreateCondBr (check, error_block, normal_block); builder.SetInsertPoint (error_block); gripe_nantl.call (builder); builder.CreateBr (normal_block); builder.SetInsertPoint (normal_block); llvm::Value *zero = llvm::ConstantFP::get (scalar_t, 0); llvm::Value *ret = builder.CreateFCmpONE (fn.argument (builder, 0), zero); fn.do_return (builder, ret); } logically_true_fn.add_overload (fn); // logically_true boolean fn = create_identity (boolean); logically_true_fn.add_overload (fn); // make_range // FIXME: May be benificial to implement all in LLVM make_range_fn.stash_name ("make_range"); jit_function compute_nelem = create_function (jit_convention::external, "octave_jit_compute_nelem", index, scalar, scalar, scalar); compute_nelem.add_mapping (engine, &octave_jit_compute_nelem); fn = create_function (jit_convention::internal, "octave_jit_make_range", range, scalar, scalar, scalar); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *base = fn.argument (builder, 0); llvm::Value *limit = fn.argument (builder, 1); llvm::Value *inc = fn.argument (builder, 2); llvm::Value *nelem = compute_nelem.call (builder, base, limit, inc); llvm::Value *dzero = llvm::ConstantFP::get (scalar_t, 0); llvm::Value *izero = llvm::ConstantInt::get (index_t, 0); llvm::Value *rng = llvm::ConstantStruct::get (range_t, dzero, dzero, dzero, izero, NULL); rng = builder.CreateInsertValue (rng, base, 0); rng = builder.CreateInsertValue (rng, limit, 1); rng = builder.CreateInsertValue (rng, inc, 2); rng = builder.CreateInsertValue (rng, nelem, 3); fn.do_return (builder, rng); } make_range_fn.add_overload (fn); // paren_subsref jit_type *jit_int = intN (sizeof (int) * 8); llvm::Type *int_t = jit_int->to_llvm (); jit_function ginvalid_index = create_function (jit_convention::external, "octave_jit_ginvalid_index", 0); ginvalid_index.add_mapping (engine, &octave_jit_ginvalid_index); jit_function gindex_range = create_function (jit_convention::external, "octave_jit_gindex_range", 0, jit_int, jit_int, index, index); gindex_range.add_mapping (engine, &octave_jit_gindex_range); fn = create_function (jit_convention::internal, "()subsref", scalar, matrix, scalar); fn.mark_can_error (); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *one = llvm::ConstantInt::get (index_t, 1); llvm::Value *ione; if (index_t == int_t) ione = one; else ione = llvm::ConstantInt::get (int_t, 1); llvm::Value *undef = llvm::UndefValue::get (scalar_t); llvm::Value *mat = fn.argument (builder, 0); llvm::Value *idx = fn.argument (builder, 1); // convert index to scalar to integer, and check index >= 1 llvm::Value *int_idx = builder.CreateFPToSI (idx, index_t); llvm::Value *check_idx = builder.CreateSIToFP (int_idx, scalar_t); llvm::Value *cond0 = builder.CreateFCmpUNE (idx, check_idx); llvm::Value *cond1 = builder.CreateICmpSLT (int_idx, one); llvm::Value *cond = builder.CreateOr (cond0, cond1); llvm::BasicBlock *done = fn.new_block ("done"); llvm::BasicBlock *conv_error = fn.new_block ("conv_error", done); llvm::BasicBlock *normal = fn.new_block ("normal", done); builder.CreateCondBr (cond, conv_error, normal); builder.SetInsertPoint (conv_error); ginvalid_index.call (builder); builder.CreateBr (done); builder.SetInsertPoint (normal); llvm::Value *len = builder.CreateExtractValue (mat, llvm::ArrayRef<unsigned> (2)); cond = builder.CreateICmpSGT (int_idx, len); llvm::BasicBlock *bounds_error = fn.new_block ("bounds_error", done); llvm::BasicBlock *success = fn.new_block ("success", done); builder.CreateCondBr (cond, bounds_error, success); builder.SetInsertPoint (bounds_error); gindex_range.call (builder, ione, ione, int_idx, len); builder.CreateBr (done); builder.SetInsertPoint (success); llvm::Value *data = builder.CreateExtractValue (mat, llvm::ArrayRef<unsigned> (1)); llvm::Value *gep = builder.CreateInBoundsGEP (data, int_idx); llvm::Value *ret = builder.CreateLoad (gep); builder.CreateBr (done); builder.SetInsertPoint (done); llvm::PHINode *merge = llvm::PHINode::Create (scalar_t, 3); builder.Insert (merge); merge->addIncoming (undef, conv_error); merge->addIncoming (undef, bounds_error); merge->addIncoming (ret, success); fn.do_return (builder, merge); } paren_subsref_fn.add_overload (fn); // paren subsasgn paren_subsasgn_fn.stash_name ("()subsasgn"); jit_function resize_paren_subsasgn = create_function (jit_convention::external, "octave_jit_paren_subsasgn_impl", matrix, matrix, index, scalar); resize_paren_subsasgn.add_mapping (engine, &octave_jit_paren_subsasgn_impl); fn = create_function (jit_convention::internal, "octave_jit_paren_subsasgn", matrix, matrix, scalar, scalar); fn.mark_can_error (); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *one = llvm::ConstantInt::get (index_t, 1); llvm::Value *mat = fn.argument (builder, 0); llvm::Value *idx = fn.argument (builder, 1); llvm::Value *value = fn.argument (builder, 2); llvm::Value *int_idx = builder.CreateFPToSI (idx, index_t); llvm::Value *check_idx = builder.CreateSIToFP (int_idx, scalar_t); llvm::Value *cond0 = builder.CreateFCmpUNE (idx, check_idx); llvm::Value *cond1 = builder.CreateICmpSLT (int_idx, one); llvm::Value *cond = builder.CreateOr (cond0, cond1); llvm::BasicBlock *done = fn.new_block ("done"); llvm::BasicBlock *conv_error = fn.new_block ("conv_error", done); llvm::BasicBlock *normal = fn.new_block ("normal", done); builder.CreateCondBr (cond, conv_error, normal); builder.SetInsertPoint (conv_error); ginvalid_index.call (builder); builder.CreateBr (done); builder.SetInsertPoint (normal); llvm::Value *len = builder.CreateExtractValue (mat, 2); cond0 = builder.CreateICmpSGT (int_idx, len); llvm::Value *rcount = builder.CreateExtractValue (mat, 0); rcount = builder.CreateLoad (rcount); cond1 = builder.CreateICmpSGT (rcount, one); cond = builder.CreateOr (cond0, cond1); llvm::BasicBlock *bounds_error = fn.new_block ("bounds_error", done); llvm::BasicBlock *success = fn.new_block ("success", done); builder.CreateCondBr (cond, bounds_error, success); // resize on out of bounds access builder.SetInsertPoint (bounds_error); llvm::Value *resize_result = resize_paren_subsasgn.call (builder, mat, int_idx, value); builder.CreateBr (done); builder.SetInsertPoint (success); llvm::Value *data = builder.CreateExtractValue (mat, llvm::ArrayRef<unsigned> (1)); llvm::Value *gep = builder.CreateInBoundsGEP (data, int_idx); builder.CreateStore (value, gep); builder.CreateBr (done); builder.SetInsertPoint (done); llvm::PHINode *merge = llvm::PHINode::Create (matrix_t, 3); builder.Insert (merge); merge->addIncoming (mat, conv_error); merge->addIncoming (resize_result, bounds_error); merge->addIncoming (mat, success); fn.do_return (builder, merge); } paren_subsasgn_fn.add_overload (fn); fn = create_function (jit_convention::external, "octave_jit_paren_subsasgn_matrix_range", matrix, matrix, range, scalar); fn.add_mapping (engine, &octave_jit_paren_subsasgn_matrix_range); fn.mark_can_error (); paren_subsasgn_fn.add_overload (fn); end_fn.stash_name ("end"); fn = create_function (jit_convention::internal, "octave_jit_end_matrix", scalar, matrix); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *mat = fn.argument (builder, 0); llvm::Value *ret = builder.CreateExtractValue (mat, 2); fn.do_return (builder, builder.CreateSIToFP (ret, scalar_t)); } end_fn.add_overload (fn); casts[any->type_id ()].stash_name ("(any)"); casts[scalar->type_id ()].stash_name ("(scalar)"); casts[complex->type_id ()].stash_name ("(complex)"); casts[matrix->type_id ()].stash_name ("(matrix)"); casts[any->type_id ()].stash_name ("(range)"); // cast any <- matrix fn = create_function (jit_convention::external, "octave_jit_cast_any_matrix", any, matrix); fn.add_mapping (engine, &octave_jit_cast_any_matrix); casts[any->type_id ()].add_overload (fn); // cast matrix <- any fn = create_function (jit_convention::external, "octave_jit_cast_matrix_any", matrix, any); fn.add_mapping (engine, &octave_jit_cast_matrix_any); casts[matrix->type_id ()].add_overload (fn); // cast any <- range fn = create_function (jit_convention::external, "octave_jit_cast_any_range", any, range); fn.add_mapping (engine, &octave_jit_cast_any_range); casts[any->type_id ()].add_overload (fn); // cast range <- any fn = create_function (jit_convention::external, "octave_jit_cast_range_any", range, any); fn.add_mapping (engine, &octave_jit_cast_range_any); casts[range->type_id ()].add_overload (fn); // cast any <- scalar fn = create_function (jit_convention::external, "octave_jit_cast_any_scalar", any, scalar); fn.add_mapping (engine, &octave_jit_cast_any_scalar); casts[any->type_id ()].add_overload (fn); // cast scalar <- any fn = create_function (jit_convention::external, "octave_jit_cast_scalar_any", scalar, any); fn.add_mapping (engine, &octave_jit_cast_scalar_any); casts[scalar->type_id ()].add_overload (fn); // cast any <- complex fn = create_function (jit_convention::external, "octave_jit_cast_any_complex", any, complex); fn.add_mapping (engine, &octave_jit_cast_any_complex); casts[any->type_id ()].add_overload (fn); // cast complex <- any fn = create_function (jit_convention::external, "octave_jit_cast_complex_any", complex, any); fn.add_mapping (engine, &octave_jit_cast_complex_any); casts[complex->type_id ()].add_overload (fn); // cast complex <- scalar fn = create_function (jit_convention::internal, "octave_jit_cast_complex_scalar", complex, scalar); body = fn.new_block (); builder.SetInsertPoint (body); { llvm::Value *zero = llvm::ConstantFP::get (scalar_t, 0); fn.do_return (builder, complex_new (fn.argument (builder, 0), zero)); } casts[complex->type_id ()].add_overload (fn); // cast scalar <- complex fn = create_function (jit_convention::internal, "octave_jit_cast_scalar_complex", scalar, complex); body = fn.new_block (); builder.SetInsertPoint (body); fn.do_return (builder, complex_real (fn.argument (builder, 0))); casts[scalar->type_id ()].add_overload (fn); // cast any <- any fn = create_identity (any); casts[any->type_id ()].add_overload (fn); // cast scalar <- scalar fn = create_identity (scalar); casts[scalar->type_id ()].add_overload (fn); // cast complex <- complex fn = create_identity (complex); casts[complex->type_id ()].add_overload (fn); // -------------------- builtin functions -------------------- add_builtin ("#unknown_function"); unknown_function = builtins["#unknown_function"]; add_builtin ("sin"); register_intrinsic ("sin", llvm::Intrinsic::sin, scalar, scalar); register_generic ("sin", matrix, matrix); add_builtin ("cos"); register_intrinsic ("cos", llvm::Intrinsic::cos, scalar, scalar); register_generic ("cos", matrix, matrix); add_builtin ("exp"); register_intrinsic ("exp", llvm::Intrinsic::cos, scalar, scalar); register_generic ("exp", matrix, matrix); casts.resize (next_id + 1); jit_function any_id = create_identity (any); jit_function release_any = get_release (any); std::vector<jit_type *> args; args.resize (1); for (std::map<std::string, jit_type *>::iterator iter = builtins.begin (); iter != builtins.end (); ++iter) { jit_type *btype = iter->second; args[0] = btype; release_fn.add_overload (jit_function (release_any, 0, args)); casts[any->type_id ()].add_overload (jit_function (any_id, any, args)); args[0] = any; casts[btype->type_id ()].add_overload (jit_function (any_id, btype, args)); } } void jit_typeinfo::add_print (jit_type *ty, void *fptr) { std::stringstream name; name << "octave_jit_print_" << ty->name (); jit_function fn = create_function (jit_convention::external, name.str (), 0, intN (8), ty); fn.add_mapping (engine, fptr); print_fn.add_overload (fn); } // FIXME: cp between add_binary_op, add_binary_icmp, and add_binary_fcmp void jit_typeinfo::add_binary_op (jit_type *ty, int op, int llvm_op) { std::stringstream fname; octave_value::binary_op ov_op = static_cast<octave_value::binary_op>(op); fname << "octave_jit_" << octave_value::binary_op_as_string (ov_op) << "_" << ty->name (); jit_function fn = create_function (jit_convention::internal, fname.str (), ty, ty, ty); llvm::BasicBlock *block = fn.new_block (); builder.SetInsertPoint (block); llvm::Instruction::BinaryOps temp = static_cast<llvm::Instruction::BinaryOps>(llvm_op); llvm::Value *ret = builder.CreateBinOp (temp, fn.argument (builder, 0), fn.argument (builder, 1)); fn.do_return (builder, ret); binary_ops[op].add_overload (fn); } void jit_typeinfo::add_binary_icmp (jit_type *ty, int op, int llvm_op) { std::stringstream fname; octave_value::binary_op ov_op = static_cast<octave_value::binary_op>(op); fname << "octave_jit" << octave_value::binary_op_as_string (ov_op) << "_" << ty->name (); jit_function fn = create_function (jit_convention::internal, fname.str (), boolean, ty, ty); llvm::BasicBlock *block = fn.new_block (); builder.SetInsertPoint (block); llvm::CmpInst::Predicate temp = static_cast<llvm::CmpInst::Predicate>(llvm_op); llvm::Value *ret = builder.CreateICmp (temp, fn.argument (builder, 0), fn.argument (builder, 1)); fn.do_return (builder, ret); binary_ops[op].add_overload (fn); } void jit_typeinfo::add_binary_fcmp (jit_type *ty, int op, int llvm_op) { std::stringstream fname; octave_value::binary_op ov_op = static_cast<octave_value::binary_op>(op); fname << "octave_jit" << octave_value::binary_op_as_string (ov_op) << "_" << ty->name (); jit_function fn = create_function (jit_convention::internal, fname.str (), boolean, ty, ty); llvm::BasicBlock *block = fn.new_block (); builder.SetInsertPoint (block); llvm::CmpInst::Predicate temp = static_cast<llvm::CmpInst::Predicate>(llvm_op); llvm::Value *ret = builder.CreateFCmp (temp, fn.argument (builder, 0), fn.argument (builder, 1)); fn.do_return (builder, ret); binary_ops[op].add_overload (fn); } jit_function jit_typeinfo::create_function (jit_convention::type cc, const llvm::Twine& name, jit_type *ret, const std::vector<jit_type *>& args) { jit_function result (module, cc, name, ret, args); return result; } jit_function jit_typeinfo::create_identity (jit_type *type) { size_t id = type->type_id (); if (id >= identities.size ()) identities.resize (id + 1); if (! identities[id].valid ()) { jit_function fn = create_function (jit_convention::internal, "id", type, type); llvm::BasicBlock *body = fn.new_block (); builder.SetInsertPoint (body); fn.do_return (builder, fn.argument (builder, 0)); return identities[id] = fn; } return identities[id]; } llvm::Value * jit_typeinfo::do_insert_error_check (llvm::IRBuilderD& abuilder) { return abuilder.CreateLoad (lerror_state); } void jit_typeinfo::add_builtin (const std::string& name) { jit_type *btype = new_type (name, any, any->to_llvm ()); builtins[name] = btype; octave_builtin *ov_builtin = find_builtin (name); if (ov_builtin) ov_builtin->stash_jit (*btype); } void jit_typeinfo::register_intrinsic (const std::string& name, size_t iid, jit_type *result, const std::vector<jit_type *>& args) { jit_type *builtin_type = builtins[name]; size_t nargs = args.size (); llvm::SmallVector<llvm::Type *, 5> llvm_args (nargs); for (size_t i = 0; i < nargs; ++i) llvm_args[i] = args[i]->to_llvm (); llvm::Intrinsic::ID id = static_cast<llvm::Intrinsic::ID> (iid); llvm::Function *ifun = llvm::Intrinsic::getDeclaration (module, id, llvm_args); std::stringstream fn_name; fn_name << "octave_jit_" << name; std::vector<jit_type *> args1 (nargs + 1); args1[0] = builtin_type; std::copy (args.begin (), args.end (), args1.begin () + 1); // The first argument will be the Octave function, but we already know that // the function call is the equivalent of the intrinsic, so we ignore it and // call the intrinsic with the remaining arguments. jit_function fn = create_function (jit_convention::internal, fn_name.str (), result, args1); llvm::BasicBlock *body = fn.new_block (); builder.SetInsertPoint (body); llvm::SmallVector<llvm::Value *, 5> fargs (nargs); for (size_t i = 0; i < nargs; ++i) fargs[i] = fn.argument (builder, i + 1); llvm::Value *ret = builder.CreateCall (ifun, fargs); fn.do_return (builder, ret); paren_subsref_fn.add_overload (fn); } octave_builtin * jit_typeinfo::find_builtin (const std::string& name) { // FIXME: Finalize what we want to store in octave_builtin, then add functions // to access these values in octave_value octave_value ov_builtin = symbol_table::find (name); return dynamic_cast<octave_builtin *> (ov_builtin.internal_rep ()); } void jit_typeinfo::register_generic (const std::string&, jit_type *, const std::vector<jit_type *>&) { // FIXME: Implement } jit_function jit_typeinfo::mirror_binary (const jit_function& fn) { jit_function ret = create_function (jit_convention::internal, fn.name () + "_reverse", fn.result (), fn.argument_type (1), fn.argument_type (0)); if (fn.can_error ()) ret.mark_can_error (); llvm::BasicBlock *body = ret.new_block (); builder.SetInsertPoint (body); llvm::Value *result = fn.call (builder, ret.argument (builder, 1), ret.argument (builder, 0)); if (ret.result ()) ret.do_return (builder, result); else ret.do_return (builder); return ret; } llvm::Value * jit_typeinfo::pack_complex (llvm::IRBuilderD& bld, llvm::Value *cplx) { llvm::Type *complex_ret = instance->complex_ret; llvm::Value *real = bld.CreateExtractElement (cplx, bld.getInt32 (0)); llvm::Value *imag = bld.CreateExtractElement (cplx, bld.getInt32 (1)); llvm::Value *ret = llvm::UndefValue::get (complex_ret); ret = bld.CreateInsertValue (ret, real, 0); return bld.CreateInsertValue (ret, imag, 1); } llvm::Value * jit_typeinfo::unpack_complex (llvm::IRBuilderD& bld, llvm::Value *result) { llvm::Type *complex_t = get_complex ()->to_llvm (); llvm::Value *real = bld.CreateExtractValue (result, 0); llvm::Value *imag = bld.CreateExtractValue (result, 1); llvm::Value *ret = llvm::UndefValue::get (complex_t); ret = bld.CreateInsertElement (ret, real, bld.getInt32 (0)); return bld.CreateInsertElement (ret, imag, bld.getInt32 (1)); } llvm::Value * jit_typeinfo::complex_real (llvm::Value *cx) { return builder.CreateExtractElement (cx, builder.getInt32 (0)); } llvm::Value * jit_typeinfo::complex_real (llvm::Value *cx, llvm::Value *real) { return builder.CreateInsertElement (cx, real, builder.getInt32 (0)); } llvm::Value * jit_typeinfo::complex_imag (llvm::Value *cx) { return builder.CreateExtractElement (cx, builder.getInt32 (1)); } llvm::Value * jit_typeinfo::complex_imag (llvm::Value *cx, llvm::Value *imag) { return builder.CreateInsertElement (cx, imag, builder.getInt32 (1)); } llvm::Value * jit_typeinfo::complex_new (llvm::Value *real, llvm::Value *imag) { llvm::Value *ret = llvm::UndefValue::get (complex->to_llvm ()); ret = complex_real (ret, real); return complex_imag (ret, imag); } void jit_typeinfo::create_int (size_t nbits) { std::stringstream tname; tname << "int" << nbits; ints[nbits] = new_type (tname.str (), any, llvm::Type::getIntNTy (context, nbits)); } jit_type * jit_typeinfo::intN (size_t nbits) const { std::map<size_t, jit_type *>::const_iterator iter = ints.find (nbits); if (iter != ints.end ()) return iter->second; throw jit_fail_exception ("No such integer type"); } jit_type * jit_typeinfo::do_type_of (const octave_value &ov) const { if (ov.is_function ()) { // FIXME: This is ugly, we need to finalize how we want to to this, then // have octave_value fully support the needed functionality octave_builtin *builtin = dynamic_cast<octave_builtin *> (ov.internal_rep ()); return builtin && builtin->to_jit () ? builtin->to_jit () : unknown_function; } if (ov.is_range ()) return get_range (); if (ov.is_double_type ()) { if (ov.is_real_scalar ()) return get_scalar (); if (ov.is_matrix_type ()) return get_matrix (); } if (ov.is_complex_scalar ()) return get_complex (); return get_any (); } jit_type* jit_typeinfo::new_type (const std::string& name, jit_type *parent, llvm::Type *llvm_type) { jit_type *ret = new jit_type (name, parent, llvm_type, next_id++); id_to_type.push_back (ret); return ret; } #endif