Mercurial > hg > octave-nkf
view scripts/general/dblquad.m @ 20038:9fc020886ae9
maint: Clean up m-files to follow Octave coding conventions.
Try to trim long lines to < 80 chars.
Use '##' for single line comments.
Use '(...)' around tests for if/elseif/switch/while.
Abut cell indexing operator '{' next to variable.
Abut array indexing operator '(' next to variable.
Use space between negation operator '!' and following expression.
Use two newlines between endfunction and start of %!test or %!demo code.
Remove unnecessary parens grouping between short-circuit operators.
Remove stray extra spaces (typos) between variables and assignment operators.
Remove stray extra spaces from ends of lines.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 23 Feb 2015 14:54:39 -0800 |
parents | 4197fc428c7d |
children | 7503499a252b |
line wrap: on
line source
## Copyright (C) 2008-2015 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} dblquad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}) ## @deftypefnx {Function File} {} dblquad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{tol}) ## @deftypefnx {Function File} {} dblquad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{tol}, @var{quadf}) ## @deftypefnx {Function File} {} dblquad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{tol}, @var{quadf}, @dots{}) ## Numerically evaluate the double integral of @var{f}. ## @var{f} is a function handle, inline function, or string ## containing the name of the function to evaluate. The function @var{f} must ## have the form @math{z = f(x,y)} where @var{x} is a vector and @var{y} is a ## scalar. It should return a vector of the same length and orientation as ## @var{x}. ## ## @var{xa}, @var{ya} and @var{xb}, @var{yb} are the lower and upper limits of ## integration for x and y respectively. The underlying integrator determines ## whether infinite bounds are accepted. ## ## The optional argument @var{tol} defines the absolute tolerance used to ## integrate each sub-integral. The default value is @math{1e^{-6}}. ## ## The optional argument @var{quadf} specifies which underlying integrator ## function to use. Any choice but @code{quad} is available and the default ## is @code{quadcc}. ## ## Additional arguments, are passed directly to @var{f}. To use the default ## value for @var{tol} or @var{quadf} one may pass @qcode{':'} or an empty ## matrix ([]). ## @seealso{triplequad, quad, quadv, quadl, quadgk, quadcc, trapz} ## @end deftypefn function q = dblquad (f, xa, xb, ya, yb, tol = 1e-6, quadf = @quadcc, varargin) if (nargin < 5) print_usage (); endif if (isempty (tol)) tol = 1e-6; endif if (isempty (quadf)) quadf = @quadcc; endif inner = @__dblquad_inner__; if (ischar (f)) f = @(x,y) feval (f, x, y, varargin{:}); varargin = {}; endif q = feval (quadf, @(y) inner (y, f, xa, xb, tol, quadf, varargin{:}), ya, yb, tol); endfunction function q = __dblquad_inner__ (y, f, xa, xb, tol, quadf, varargin) q = zeros (size (y)); for i = 1 : length (y) q(i) = feval (quadf, @(x) f(x, y(i), varargin{:}), xa, xb, tol); endfor endfunction ## Nasty integrand to show quadcc off %!assert (dblquad (@(x,y) 1 ./ (x+y), 0, 1, 0, 1), 2*log (2), 1e-6) %!assert (dblquad (@(x,y) exp (-x.^2 - y.^2) , -1, 1, -1, 1, 1e-6, @quadgk), pi * erf (1).^2, 1e-6) %!assert (dblquad (@(x,y) exp (-x.^2 - y.^2) , -1, 1, -1, 1, 1e-6, @quadl), pi * erf (1).^2, 1e-6) %!assert (dblquad (@(x,y) exp (-x.^2 - y.^2) , -1, 1, -1, 1, 1e-6, @quadv), pi * erf (1).^2, 1e-6)