Mercurial > hg > octave-nkf
view scripts/general/del2.m @ 20038:9fc020886ae9
maint: Clean up m-files to follow Octave coding conventions.
Try to trim long lines to < 80 chars.
Use '##' for single line comments.
Use '(...)' around tests for if/elseif/switch/while.
Abut cell indexing operator '{' next to variable.
Abut array indexing operator '(' next to variable.
Use space between negation operator '!' and following expression.
Use two newlines between endfunction and start of %!test or %!demo code.
Remove unnecessary parens grouping between short-circuit operators.
Remove stray extra spaces (typos) between variables and assignment operators.
Remove stray extra spaces from ends of lines.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 23 Feb 2015 14:54:39 -0800 |
parents | 4197fc428c7d |
children | 7503499a252b |
line wrap: on
line source
## Copyright (C) 2000-2015 Kai Habel ## Copyright (C) 2007 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{d} =} del2 (@var{M}) ## @deftypefnx {Function File} {@var{d} =} del2 (@var{M}, @var{h}) ## @deftypefnx {Function File} {@var{d} =} del2 (@var{M}, @var{dx}, @var{dy}, @dots{}) ## ## Calculate the discrete Laplace ## @tex ## operator $( \nabla^2 )$. ## @end tex ## @ifnottex ## operator. ## @end ifnottex ## For a 2-dimensional matrix @var{M} this is defined as ## @tex ## $$d = {1 \over 4} \left( {d^2 \over dx^2} M(x,y) + {d^2 \over dy^2} M(x,y) \right)$$ ## @end tex ## @ifnottex ## ## @example ## @group ## 1 / d^2 d^2 \ ## D = --- * | --- M(x,y) + --- M(x,y) | ## 4 \ dx^2 dy^2 / ## @end group ## @end example ## ## @end ifnottex ## For N-dimensional arrays the sum in parentheses is expanded to include second ## derivatives over the additional higher dimensions. ## ## The spacing between evaluation points may be defined by @var{h}, which is a ## scalar defining the equidistant spacing in all dimensions. Alternatively, ## the spacing in each dimension may be defined separately by @var{dx}, ## @var{dy}, etc. A scalar spacing argument defines equidistant spacing, ## whereas a vector argument can be used to specify variable spacing. The ## length of the spacing vectors must match the respective dimension of ## @var{M}. The default spacing value is 1. ## ## At least 3 data points are needed for each dimension. Boundary points are ## calculated from the linear extrapolation of interior points. ## ## @seealso{gradient, diff} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> function D = del2 (M, varargin) if (nargin < 1) print_usage (); endif nd = ndims (M); sz = size (M); dx = cell (1, nd); if (nargin == 2 || nargin == 1) if (nargin == 1) h = 1; else h = varargin{1}; endif for i = 1 : nd if (isscalar (h)) dx{i} = h * ones (sz (i), 1); else if (length (h) == sz (i)) dx{i} = diff (h)(:); else error ("del2: dimensionality mismatch in %d-th spacing vector", i); endif endif endfor elseif (nargin - 1 == nd) ## Reverse dx{1} and dx{2} as the X-dim is the 2nd dim of the ND array tmp = varargin{1}; varargin{1} = varargin{2}; varargin{2} = tmp; for i = 1 : nd if (isscalar (varargin{i})) dx{i} = varargin{i} * ones (sz (i), 1); else if (length (varargin{i}) == sz (i)) dx{i} = diff (varargin{i})(:); else error ("del2: dimensionality mismatch in %d-th spacing vector", i); endif endif endfor else print_usage (); endif idx = cell (1, nd); for i = 1: nd idx{i} = ":"; endfor D = zeros (sz); for i = 1: nd if (sz(i) >= 3) DD = zeros (sz); idx1 = idx2 = idx3 = idx; ## interior points idx1{i} = 1 : sz(i) - 2; idx2{i} = 2 : sz(i) - 1; idx3{i} = 3 : sz(i); szi = sz; szi (i) = 1; h1 = repmat (shiftdim (dx{i}(1 : sz(i) - 2), 1 - i), szi); h2 = repmat (shiftdim (dx{i}(2 : sz(i) - 1), 1 - i), szi); DD(idx2{:}) = ((M(idx1{:}) - M(idx2{:})) ./ h1 + ... (M(idx3{:}) - M(idx2{:})) ./ h2) ./ (h1 + h2); ## left and right boundary if (sz(i) == 3) DD(idx1{:}) = DD(idx3{:}) = DD(idx2{:}); else idx1{i} = 1; idx2{i} = 2; idx3{i} = 3; DD(idx1{:}) = (dx{i}(1) + dx{i}(2)) / dx{i}(2) * DD(idx2{:}) - ... dx{i}(1) / dx{i}(2) * DD(idx3{:}); idx1{i} = sz(i); idx2{i} = sz(i) - 1; idx3{i} = sz(i) - 2; DD(idx1{:}) = (dx{i}(sz(i) - 1) + dx{i}(sz(i) - 2)) / ... dx{i}(sz(i) - 2) * DD(idx2{:}) - ... dx{i}(sz(i) - 1) / dx{i}(sz(i) - 2) * DD(idx3{:}); endif D += DD; endif endfor D = D ./ nd; endfunction ## 3x3 constant test %!test %! a = ones (3,3); %! b = del2 (a); %! assert (b(:,1), [0.00;0.00;0.00]); %! assert (b(:,2), [0.00;0.00;0.00]); %! assert (b(:,3), [0.00;0.00;0.00]); ## 3x3 planar test %!test %! a = [1,2,3;2,3,4;3,4,5]; %! b = del2 (a); %! assert (b(:,1), [0.00;0.00;0.00]); %! assert (b(:,2), [0.00;0.00;0.00]); %! assert (b(:,3), [0.00;0.00;0.00]); ## 3x3 corner test %!test %! a = zeros (3,3); %! a(1,1) = 1.0; %! b = 2*del2 (a); %! assert (b(:,1), [1.00;0.50;0.50]); %! assert (b(:,2), [0.50;0.00;0.00]); %! assert (b(:,3), [0.50;0.00;0.00]); %! assert (b, flipud (2*del2 (flipud (a)))); %! assert (b, fliplr (2*del2 (fliplr (a)))); %! assert (b, flipud (fliplr (2*del2 (fliplr (flipud (a)))))); ## 3x3 boundary test %!test %! a = zeros (3,3); %! a(2,1)=1.0; %! b = 2*del2 (a); %! assert (b(:,1), [-1.00;-0.50;-1.00]); %! assert (b(:,2), [0.00;0.50;0.00]); %! assert (b(:,3), [0.00;0.50;0.00]); %! assert (b, flipud (2*del2 (flipud (a)))); %! assert (b, fliplr (2*del2 (fliplr (a)))); %! assert (b, flipud (fliplr (2*del2 (fliplr (flipud (a)))))); ## 3x3 center test %!test %! a = zeros (3,3); %! a(2,2) = 1.0; %! b = del2 (a); %! assert (b(:,1), [0.00;-0.50;0.00]); %! assert (b(:,2), [-0.50;-1.00;-0.50]); %! assert (b(:,3), [0.00;-0.50;0.00]); ## 4x4 constant test %!test %! a = ones (4,4); %! b = del2 (a); %! assert (b(:,1), [0.00;0.00;0.00;0.00]); %! assert (b(:,2), [0.00;0.00;0.00;0.00]); %! assert (b(:,3), [0.00;0.00;0.00;0.00]); %! assert (b(:,4), [0.00;0.00;0.00;0.00]); ## 4x4 planar test %!test %! a = [1,2,3,4;2,3,4,5;3,4,5,6;4,5,6,7]; %! b = del2 (a); %! assert (b(:,1), [0.00;0.00;0.00;0.00]); %! assert (b(:,2), [0.00;0.00;0.00;0.00]); %! assert (b(:,3), [0.00;0.00;0.00;0.00]); %! assert (b(:,4), [0.00;0.00;0.00;0.00]); ## 4x4 corner test %!test %! a = zeros (4,4); %! a(1,1) = 1.0; %! b = 2*del2 (a); %! assert (b(:,1), [2.00;0.50;0.00;-0.50]); %! assert (b(:,2), [0.50;0.00;0.00;0.00]); %! assert (b(:,3), [0.00;0.00;0.00;0.00]); %! assert (b(:,4), [-0.50;0.00;0.00;0.00]); %! assert (b, flipud (2*del2 (flipud (a)))); %! assert (b, fliplr (2*del2 (fliplr (a)))); %! assert (b, flipud (fliplr (2*del2 (fliplr (flipud (a)))))); ## 9x9 center test %!test %! a = zeros (9,9); %! a(5,5) = 1.0; %! b = 2*del2 (a); %! assert (b(:,1), [0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00]); %! assert (b(:,2), [0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00]); %! assert (b(:,3), [0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00]); %! assert (b(:,4), [0.00;0.00;0.00;0.00;0.50;0.00;0.00;0.00;0.00]); %! assert (b(:,5), [0.00;0.00;0.00;0.50;-2.00;0.50;0.00;0.00;0.00]); %! assert (b(:,6), b(:,4)); %! assert (b(:,7), b(:,3)); %! assert (b(:,8), b(:,2)); %! assert (b(:,9), b(:,1)); ## 9x9 boundary test %!test %! a = zeros (9,9); %! a(1,5) = 1.0; %! b = 2*del2 (a); %! assert (b(1,:), [0.00,0.00,0.00,0.50,0.00,0.50,0.00,0.00,0.00]); %! assert (b(2,:), [0.00,0.00,0.00,0.00,0.50,0.00,0.00,0.00,0.00]); %! assert (b(3:9,:), zeros (7,9)); %! a(1,5) = 0.0; %! a(5,1) = 1.0; %! b = 2*del2 (a); %! assert (b(:,1), [0.00;0.00;0.00;0.50;0.00;0.50;0.00;0.00;0.00]); %! assert (b(:,2), [0.00;0.00;0.00;0.00;0.50;0.00;0.00;0.00;0.00]); %! assert (b(:,3:9), zeros (9,7)); ## 9x9 dh center test %!test %! a = zeros (9,9); %! a(5,5) = 1.0; %! b = 8*del2 (a,2); %! assert (b(:,1:3), zeros (9,3)); %! assert (b(:,4), [0.00;0.00;0.00;0.00;0.50;0.00;0.00;0.00;0.00]); %! assert (b(:,5), [0.00;0.00;0.00;0.50;-2.00;0.50;0.00;0.00;0.00]); %! assert (b(:,6), b(:,4)); %! assert (b(:,7:9), zeros (9,3)); ## 9x9 dx test %!test %! a = zeros (9,9); %! a(5,5) = 1.0; %! b = 4*del2 (a,2,1); %! assert (b(1:3,:), zeros (3,9)); %! assert (b(4,:), [0.00;0.00;0.00;0.00;1.00;0.00;0.00;0.00;0.00]'); %! assert (b(5,:), [0.00;0.00;0.00;0.25;-2.5;0.25;0.00;0.00;0.00]'); %! assert (b(6,:), b(4,:)); %! assert (b(7:9,:), zeros (3,9)); ## 9x9 dy test %!test %! a = zeros (9,9); %! a(5,5) = 1.0; %! b = 4*del2 (a,1,2); %! assert (b(:,1:3), zeros (9,3)); %! assert (b(:,4), [0.00;0.00;0.00;0.00;1.00;0.00;0.00;0.00;0.00]); %! assert (b(:,5), [0.00;0.00;0.00;0.25;-2.5;0.25;0.00;0.00;0.00]); %! assert (b(:,6), b(:,4)); %! assert (b(:,7:9), zeros (9,3)); ## 3D test %!test %! a = zeros (9,9,9); %! a(5,5,5) = 1.0; %! b = 8*3*del2 (a,2); %! assert (b(:,:,1:3), zeros (9,9,3)); %! assert (b(:,1:3,:), zeros (9,3,9)); %! assert (b(1:3,:,:), zeros (3,9,9)); %! assert (b(4:5,4,4), [0.0,0.0]'); %! assert (b(5,5,4), 1.00); %! assert (b(4,4,5), 0.00); %! assert (b(5,4,5), 1.00); %! assert (b(5,5,5),-6.00); %! assert (b, flip (b,1)); %! assert (b, flip (b,2)); %! assert (b, flip (b,3));