Mercurial > hg > octave-nkf
view scripts/sparse/qmr.m @ 20038:9fc020886ae9
maint: Clean up m-files to follow Octave coding conventions.
Try to trim long lines to < 80 chars.
Use '##' for single line comments.
Use '(...)' around tests for if/elseif/switch/while.
Abut cell indexing operator '{' next to variable.
Abut array indexing operator '(' next to variable.
Use space between negation operator '!' and following expression.
Use two newlines between endfunction and start of %!test or %!demo code.
Remove unnecessary parens grouping between short-circuit operators.
Remove stray extra spaces (typos) between variables and assignment operators.
Remove stray extra spaces from ends of lines.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 23 Feb 2015 14:54:39 -0800 |
parents | 5f2c0ca0ef51 |
children | 0a3ca546d7fc |
line wrap: on
line source
## Copyright (C) 2014-2015 Nathan Podlich ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## Octave is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; If not, see <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} qmr (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0}) ## @deftypefnx {Function File} {@var{x} =} qmr (@var{A}, @var{b}, @var{rtol}, @var{maxit}, @var{P}) ## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} qmr (@var{A}, @var{b}, @dots{}) ## Solve @code{A x = b} using the Quasi-Minimal Residual iterative ## method (without look-ahead). ## ## @itemize @minus ## @item @var{rtol} is the relative tolerance, if not given ## or set to [] the default value 1e-6 is used. ## ## @item @var{maxit} the maximum number of outer iterations, ## if not given or set to [] the default value ## @code{min (20, numel (b))} is used. ## ## @item @var{x0} the initial guess, if not given or set to [] ## the default value @code{zeros (size (b))} is used. ## @end itemize ## ## @var{A} can be passed as a matrix or as a function handle or ## inline function @code{f} such that @code{f(x, "notransp") = A*x} ## and @code{f(x, "transp") = A'*x}. ## ## The preconditioner @var{P} is given as @code{P = M1 * M2}. ## Both @var{M1} and @var{M2} can be passed as a matrix or as ## a function handle or inline function @code{g} such that ## @code{g(x, "notransp") = M1 \ x} or @code{g(x, "notransp") = M2 \ x} and ## @code{g(x, "transp") = M1' \ x} or @code{g(x, "transp") = M2' \ x}. ## ## If called with more than one output parameter ## ## @itemize @minus ## @item @var{flag} indicates the exit status: ## ## @itemize @minus ## @item 0: iteration converged to the within the chosen tolerance ## ## @item 1: the maximum number of iterations was reached before convergence ## ## @item 3: the algorithm reached stagnation ## @end itemize ## ## (the value 2 is unused but skipped for compatibility). ## ## @item @var{relres} is the final value of the relative residual. ## ## @item @var{iter} is the number of iterations performed. ## ## @item @var{resvec} is a vector containing the residual norms at each ## iteration. ## @end itemize ## ## References: ## ## @enumerate ## @item ## R. Freund and N. Nachtigal, @cite{QMR: a quasi-minimal residual ## method for non-Hermitian linear systems}, Numerische Mathematik, ## 1991, 60, pp. 315-339. ## ## @item ## R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, ## V. Eijkhour, R. Pozo, C. Romine, and H. van der Vorst, ## @cite{Templates for the solution of linear systems: Building blocks ## for iterative methods}, SIAM, 2nd ed., 1994. ## @end enumerate ## ## @seealso{bicg, bicgstab, cgs, gmres} ## @end deftypefn ## Author: Nathan Podlich <nathan.podlich@gmail.com> function [x, flag, relres, iter, resvec] = qmr (A, b, tol, maxit, M1, M2, x0) if (nargin >= 2 && isvector (full (b))) if (ischar (A)) fun = str2func (A); Ax = @(x) feval (fun, x, "notransp"); Atx = @(x) feval (fun, x, "transp"); elseif (isa (A, "function_handle")) Ax = @(x) feval (A, x, "notransp"); Atx = @(x) feval (A, x, "transp"); elseif (isnumeric (A) && ismatrix (A)) Ax = @(x) A * x; Atx = @(x) A' * x; else error (["qmr: first argument is expected to " ... "be a function or a square matrix"]); endif if (nargin < 3 || isempty (tol)) tol = 1e-6; endif if (nargin < 4 || isempty (maxit)) maxit = min (rows (b), 20); else maxit = fix (maxit); endif if (nargin < 5 || isempty (M1)) M1m1x = @(x, ignore) x; M1tm1x = M1m1x; elseif (ischar (M1)) fun = str2func (M1); M1m1x = @(x) feval (fun, x, "notransp"); M1tm1x = @(x) feval (fun, x, "transp"); elseif (isa (M1, "function_handle")) M1m1x = @(x) feval (M1, x, "notransp"); M1tm1x = @(x) feval (M1, x, "transp"); elseif (isnumeric (M1) && ismatrix (M1)) M1m1x = @(x) M1 \ x; M1tm1x = @(x) M1' \ x; else error (["qmr: preconditioner is expected to " ... "be a function or matrix"]); endif if (nargin < 6 || isempty (M2)) M2m1x = @(x, ignore) x; M2tm1x = M2m1x; elseif (ischar (M2)) fun = str2func (M2); M2m1x = @(x) feval (fun, x, "notransp"); M2tm1x = @(x) feval (fun, x, "transp"); elseif (isa (M2, "function_handle")) M2m1x = @(x) feval (M2, x, "notransp"); M2tm1x = @(x) feval (M2, x, "transp"); elseif (isnumeric (M2) && ismatrix (M2)) M2m1x = @(x) M2 \ x; M2tm1x = @(x) M2' \ x; else error (["qmr: preconditioner is expected to " ... "be a function or matrix"]); endif if (nargin < 7 || isempty (x0)) x = zeros (size (b)); else x = x0; endif r = b - Ax (x); bnorm = norm (b); res0 = norm (r); if (nargout > 4) resvec(1) = res0; endif vt = r; y = M1m1x (vt); rho0 = norm (y); wt = r; z = M2tm1x (wt); xi1 = norm (z); gamma0 = 1; eta0 = -1; flag = 1; for iter=1:1:maxit ## If rho0 == 0 or xi1 == 0, method fails. v = vt / rho0; y = y / rho0; w = wt / xi1; z = z / xi1; delta1 = z' * y; # If delta1 == 0, method fails. yt = M2m1x (y); zt = M1tm1x (z); if (iter == 1) p = yt; q = zt; else p = yt - (xi1*delta1/eps0) * p; q = zt - (rho0*delta1/eps0) * q; endif pt = Ax (p); eps0 = q' * pt; # If eps0 == 0, method fails. beta1 = eps0 / delta1; # If beta1 == 0, method fails. vt = pt - beta1 * v; y = M1m1x (vt); rho1 = norm(y); wt = Atx (q) - beta1 * w; z = M2tm1x (wt); xi1 = norm(z); theta1 = rho1 / (gamma0 * abs(beta1)); gamma1 = 1 / sqrt(1 + theta1^2); # If gamma1 == 0, method fails. eta1 = -eta0 * rho0 * gamma1^2 / (beta1 * gamma0^2); if (iter == 1) d = eta1 * p; s = eta1 * pt; else d = eta1 * p + (theta0*gamma1)^2 * d; s = eta1 * pt + (theta0 * gamma1)^2 * s; endif x += d; r -= s; res1 = norm (r) / bnorm; if (nargout > 4) resvec(iter + 1, 1) = norm (r); end if (res1 < tol) ## Convergence achieved. flag = 0; break; elseif (res0 <= res1) ## Stagnation encountered. flag = 3; break; endif theta0 = theta1; eta0 = eta1; gamma0 = gamma1; rho0 = rho1; endfor relres = res1; if (flag == 1) if (nargout < 2) printf ("qmr stopped at iteration %i ", iter); printf ("without converging to the desired tolerance %e\n", tol); printf ("because the maximum number of iterations was reached. "); printf ("The iterate returned (number %i) has ", maxit); printf ("relative residual %e\n", res1); endif elseif (flag == 3) if (nargout < 2) printf ("qmr stopped at iteration %i ", iter); printf (" without converging to the desired tolerance %e\n", tol); printf ("because the method stagnated.\n"); printf ("The iterate returned (number %i) ", iter); printf ("has relative residual %e\n", res1); endif elseif (nargout < 2) printf ("qmr converged at iteration %i ", iter); printf ("to a solution with relative residual %e\n", res1); endif else print usage(); endif endfunction %!demo %! % Solve system of A*x=b %! A = [5 -1 3;-1 2 -2;3 -2 3]; %! b = [7;-1;4]; %! [x, flag, relres, iter, resvec] = qmr (A, b) %!test %! n = 100; %! A = spdiags ([-2*ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n); %! b = sum (A, 2); %! tol = 1e-8; %! maxit = 15; %! M1 = spdiags ([ones(n,1)/(-2) ones(n,1)],-1:0, n, n); %! M2 = spdiags ([4*ones(n,1) -ones(n,1)], 0:1, n, n); %! [x, flag, relres, iter, resvec] = qmr (A, b, tol, maxit, M1, M2); %! assert (x, ones (size (b)), 1e-7); %!function y = afun (x, t, a) %! switch (t) %! case "notransp" %! y = a * x; %! case "transp" %! y = a' * x; %! endswitch %!endfunction %! %!test %! n = 100; %! A = spdiags ([-2*ones(n,1) 4*ones(n,1) -ones(n,1)], -1:1, n, n); %! b = sum (A, 2); %! tol = 1e-8; %! maxit = 15; %! M1 = spdiags ([ones(n,1)/(-2) ones(n,1)],-1:0, n, n); %! M2 = spdiags ([4*ones(n,1) -ones(n,1)], 0:1, n, n); %! %! [x, flag, relres, iter, resvec] = qmr (@(x, t) afun (x, t, A), %! b, tol, maxit, M1, M2); %! assert (x, ones (size (b)), 1e-7); %!test %! n = 100; %! tol = 1e-8; %! a = sprand (n, n, .1); %! A = a' * a + 100 * eye (n); %! b = sum (A, 2); %! [x, flag, relres, iter, resvec] = qmr (A, b, tol, [], diag (diag (A))); %! assert (x, ones (size (b)), 1e-7); %!test %! A = [1 + 1i, 1 + 1i; 2 - 1i, 2 + 1i]; %! b = A * [1; 1]; %! [x, flag, relres, iter, resvec] = qmr (A, b); %! assert (x, [1; 1], 1e-6);