Mercurial > hg > octave-nkf
view scripts/statistics/base/histc.m @ 20038:9fc020886ae9
maint: Clean up m-files to follow Octave coding conventions.
Try to trim long lines to < 80 chars.
Use '##' for single line comments.
Use '(...)' around tests for if/elseif/switch/while.
Abut cell indexing operator '{' next to variable.
Abut array indexing operator '(' next to variable.
Use space between negation operator '!' and following expression.
Use two newlines between endfunction and start of %!test or %!demo code.
Remove unnecessary parens grouping between short-circuit operators.
Remove stray extra spaces (typos) between variables and assignment operators.
Remove stray extra spaces from ends of lines.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 23 Feb 2015 14:54:39 -0800 |
parents | 4197fc428c7d |
children | d9341b422488 |
line wrap: on
line source
## Copyright (C) 2009-2015 Søren Hauberg ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{n} =} histc (@var{x}, @var{edges}) ## @deftypefnx {Function File} {@var{n} =} histc (@var{x}, @var{edges}, @var{dim}) ## @deftypefnx {Function File} {[@var{n}, @var{idx}] =} histc (@dots{}) ## Produce histogram counts. ## ## When @var{x} is a vector, the function counts the number of elements of ## @var{x} that fall in the histogram bins defined by @var{edges}. This must be ## a vector of monotonically increasing values that define the edges of the ## histogram bins. @code{@var{n}(k)} contains the number of elements in ## @var{x} for which @code{@var{edges}(k) <= @var{x} < @var{edges}(k+1)}. ## The final element of @var{n} contains the number of elements of @var{x} ## exactly equal to the last element of @var{edges}. ## ## When @var{x} is an @math{N}-dimensional array, the computation is ## carried out along dimension @var{dim}. If not specified @var{dim} defaults ## to the first non-singleton dimension. ## ## When a second output argument is requested an index matrix is also returned. ## The @var{idx} matrix has the same size as @var{x}. Each element of @var{idx} ## contains the index of the histogram bin in which the corresponding element ## of @var{x} was counted. ## @seealso{hist} ## @end deftypefn function [n, idx] = histc (x, edges, dim) if (nargin < 2 || nargin > 3) print_usage (); endif if (! isreal (x)) error ("histc: X argument must be real-valued, not complex"); endif num_edges = numel (edges); if (num_edges == 0) error ("histc: EDGES must not be empty"); endif if (! isreal (edges)) error ("histc: EDGES must be real-valued, not complex"); else ## Make sure 'edges' is sorted edges = edges(:); if (! issorted (edges) || edges(1) > edges(end)) warning ("histc: edge values not sorted on input"); edges = sort (edges); endif endif nd = ndims (x); sz = size (x); if (nargin < 3) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("histc: DIM must be an integer and a valid dimension"); endif endif nsz = sz; nsz(dim) = num_edges; ## the splitting point is 3 bins if (num_edges <= 3) ## This is the O(M*N) algorithm. ## Allocate the histogram n = zeros (nsz); ## Allocate 'idx' if (nargout > 1) idx = zeros (sz); endif ## Prepare indices idx1 = cell (1, dim-1); for k = 1:length (idx1) idx1{k} = 1:sz(k); endfor idx2 = cell (length (sz) - dim); for k = 1:length (idx2) idx2{k} = 1:sz(k+dim); endfor ## Compute the histograms for k = 1:num_edges-1 b = (edges(k) <= x & x < edges(k+1)); n(idx1{:}, k, idx2{:}) = sum (b, dim); if (nargout > 1) idx(b) = k; endif endfor b = (x == edges(end)); n(idx1{:}, num_edges, idx2{:}) = sum (b, dim); if (nargout > 1) idx(b) = num_edges; endif else ## This is the O(M*log(N) + N) algorithm. ## Look-up indices. idx = lookup (edges, x); ## Zero invalid ones (including NaNs). x < edges(1) are already zero. idx(! (x <= edges(end))) = 0; iidx = idx; ## In case of matrix input, we adjust the indices. if (! isvector (x)) nl = prod (sz(1:dim-1)); nn = sz(dim); nu = prod (sz(dim+1:end)); if (nl != 1) iidx = (iidx-1) * nl; iidx += reshape (kron (ones (1, nn*nu), 1:nl), sz); endif if (nu != 1) ne =length (edges); iidx += reshape (kron (nl*ne*(0:nu-1), ones (1, nl*nn)), sz); endif endif ## Select valid elements. iidx = iidx(idx != 0); ## Call accumarray to sum the indexed elements. n = accumarray (iidx(:), 1, nsz); endif endfunction %!test %! x = linspace (0, 10, 1001); %! n = histc (x, 0:10); %! assert (n, [repmat(100, 1, 10), 1]); %!test %! x = repmat (linspace (0, 10, 1001), [2, 1, 3]); %! n = histc (x, 0:10, 2); %! assert (n, repmat ([repmat(100, 1, 10), 1], [2, 1, 3])); %!error histc () %!error histc (1) %!error histc (1, 2, 3, 4) %!error histc ([1:10 1+i], 2) %!error histc (1:10, []) %!error histc (1, 1, 3)