Mercurial > hg > octave-nkf
view scripts/statistics/base/median.m @ 20038:9fc020886ae9
maint: Clean up m-files to follow Octave coding conventions.
Try to trim long lines to < 80 chars.
Use '##' for single line comments.
Use '(...)' around tests for if/elseif/switch/while.
Abut cell indexing operator '{' next to variable.
Abut array indexing operator '(' next to variable.
Use space between negation operator '!' and following expression.
Use two newlines between endfunction and start of %!test or %!demo code.
Remove unnecessary parens grouping between short-circuit operators.
Remove stray extra spaces (typos) between variables and assignment operators.
Remove stray extra spaces from ends of lines.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 23 Feb 2015 14:54:39 -0800 |
parents | 4197fc428c7d |
children | d9341b422488 |
line wrap: on
line source
## Copyright (C) 1996-2015 John W. Eaton ## Copyright (C) 2009-2010 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} median (@var{x}) ## @deftypefnx {Function File} {} median (@var{x}, @var{dim}) ## Compute the median value of the elements of the vector @var{x}. ## If the elements of @var{x} are sorted, the median is defined ## as ## @tex ## $$ ## {\rm median} (x) = ## \cases{x(\lceil N/2\rceil), & $N$ odd;\cr ## (x(N/2)+x(N/2+1))/2, & $N$ even.} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## x(ceil(N/2)) N odd ## median (x) = ## (x(N/2) + x((N/2)+1))/2 N even ## @end group ## @end example ## ## @end ifnottex ## If @var{x} is a matrix, compute the median value for each ## column and return them in a row vector. If the optional @var{dim} ## argument is given, operate along this dimension. ## @seealso{mean, mode} ## @end deftypefn ## Author: jwe function retval = median (x, dim) if (nargin != 1 && nargin != 2) print_usage (); endif if (! (isnumeric (x) || islogical (x))) error ("median: X must be a numeric vector or matrix"); endif if (isempty (x)) error ("median: X cannot be an empty matrix"); endif nd = ndims (x); sz = size (x); if (nargin < 2) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("median: DIM must be an integer and a valid dimension"); endif endif n = sz(dim); k = floor ((n+1) / 2); if (mod (n, 2) == 1) retval = nth_element (x, k, dim); else retval = mean (nth_element (x, k:k+1, dim), dim); endif ## Inject NaNs where needed, to be consistent with Matlab. retval(any (isnan (x), dim)) = NaN; endfunction %!test %! x = [1, 2, 3, 4, 5, 6]; %! x2 = x'; %! y = [1, 2, 3, 4, 5, 6, 7]; %! y2 = y'; %! %! assert (median (x) == median (x2) && median (x) == 3.5); %! assert (median (y) == median (y2) && median (y) == 4); %! assert (median ([x2, 2*x2]), [3.5, 7]); %! assert (median ([y2, 3*y2]), [4, 12]); %!assert (median (single ([1,2,3])), single (2)) %!assert (median ([1,2,NaN;4,5,6;NaN,8,9]), [NaN, 5, NaN]) ## Test multidimensional arrays (bug #35679) %!shared a, b, x, y %! rand ("seed", 2); %! a = rand (2,3,4,5); %! b = rand (3,4,6,5); %! x = sort (a, 4); %! y = sort (b, 3); %!assert (median (a, 4), x(:, :, :, 3)); %!assert (median (b, 3), (y(:, :, 3, :) + y(:, :, 4, :))/2); ## Test input validation %!error median () %!error median (1, 2, 3) %!error median ({1:5}) %!error median (['A'; 'B']) %!error median (1, ones (2,2)) %!error median (1, 1.5) %!error median (1, 0)