Mercurial > hg > octave-nkf
view scripts/statistics/distributions/binornd.m @ 20038:9fc020886ae9
maint: Clean up m-files to follow Octave coding conventions.
Try to trim long lines to < 80 chars.
Use '##' for single line comments.
Use '(...)' around tests for if/elseif/switch/while.
Abut cell indexing operator '{' next to variable.
Abut array indexing operator '(' next to variable.
Use space between negation operator '!' and following expression.
Use two newlines between endfunction and start of %!test or %!demo code.
Remove unnecessary parens grouping between short-circuit operators.
Remove stray extra spaces (typos) between variables and assignment operators.
Remove stray extra spaces from ends of lines.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 23 Feb 2015 14:54:39 -0800 |
parents | 4197fc428c7d |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} binornd (@var{n}, @var{p}) ## @deftypefnx {Function File} {} binornd (@var{n}, @var{p}, @var{r}) ## @deftypefnx {Function File} {} binornd (@var{n}, @var{p}, @var{r}, @var{c}, @dots{}) ## @deftypefnx {Function File} {} binornd (@var{n}, @var{p}, [@var{sz}]) ## Return a matrix of random samples from the binomial distribution with ## parameters @var{n} and @var{p}, where @var{n} is the number of trials ## and @var{p} is the probability of success. ## ## When called with a single size argument, return a square matrix with ## the dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## If no size arguments are given then the result matrix is the common size of ## @var{n} and @var{p}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Random deviates from the binomial distribution function rnd = binornd (n, p, varargin) if (nargin < 2) print_usage (); endif if (! isscalar (n) || ! isscalar (p)) [retval, n, p] = common_size (n, p); if (retval > 0) error ("binornd: N and P must be of common size or scalars"); endif endif if (iscomplex (n) || iscomplex (p)) error ("binornd: N and P must not be complex"); endif if (nargin == 2) sz = size (n); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0)) sz = varargin{1}; else error ("binornd: dimension vector must be row vector of non-negative integers"); endif elseif (nargin > 3) if (any (cellfun (@(x) (! isscalar (x) || x < 0), varargin))) error ("binornd: dimensions must be non-negative integers"); endif sz = [varargin{:}]; endif if (! isscalar (n) && ! isequal (size (n), sz)) error ("binornd: N and P must be scalar or of size SZ"); endif if (isa (n, "single") || isa (p, "single")) cls = "single"; else cls = "double"; endif if (isscalar (n) && isscalar (p)) if ((n > 0) && (n < Inf) && (n == fix (n)) && (p >= 0) && (p <= 1)) nel = prod (sz); tmp = rand (n, nel); rnd = sum (tmp < p, 1); rnd = reshape (rnd, sz); if (strcmp (cls, "single")) rnd = single (rnd); endif elseif ((n == 0) && (p >= 0) && (p <= 1)) rnd = zeros (sz, cls); else rnd = NaN (sz, cls); endif else rnd = zeros (sz, cls); k = !(n >= 0) | !(n < Inf) | !(n == fix (n)) | !(p >= 0) | !(p <= 1); rnd(k) = NaN; k = (n > 0) & (n < Inf) & (n == fix (n)) & (p >= 0) & (p <= 1); if (any (k(:))) N = max (n(k)); L = sum (k(:)); tmp = rand (N, L); ind = repmat ((1 : N)', 1, L); rnd(k) = sum ((tmp < repmat (p(k)(:)', N, 1)) & (ind <= repmat (n(k)(:)', N, 1)), 1); endif endif endfunction %!assert (binornd (0, 0, 1), 0) %!assert (binornd ([0, 0], [0, 0], 1, 2), [0, 0]) %!assert (size (binornd (2, 1/2)), [1, 1]) %!assert (size (binornd (2*ones (2,1), 1/2)), [2, 1]) %!assert (size (binornd (2*ones (2,2), 1/2)), [2, 2]) %!assert (size (binornd (2, 1/2*ones (2,1))), [2, 1]) %!assert (size (binornd (2, 1/2*ones (2,2))), [2, 2]) %!assert (size (binornd (2, 1/2, 3)), [3, 3]) %!assert (size (binornd (2, 1/2, [4 1])), [4, 1]) %!assert (size (binornd (2, 1/2, 4, 1)), [4, 1]) ## Test class of input preserved %!assert (class (binornd (2, 0.5)), "double") %!assert (class (binornd (single (2), 0.5)), "single") %!assert (class (binornd (single ([2 2]), 0.5)), "single") %!assert (class (binornd (2, single (0.5))), "single") %!assert (class (binornd (2, single ([0.5 0.5]))), "single") ## Test input validation %!error binornd () %!error binornd (1) %!error binornd (ones (3), ones (2)) %!error binornd (ones (2), ones (3)) %!error binornd (i, 2) %!error binornd (2, i) %!error binornd (1,2, -1) %!error binornd (1,2, ones (2)) %!error binornd (1,2, [2 -1 2]) %!error binornd (1,2, 1, ones (2)) %!error binornd (1,2, 1, -1) %!error binornd (ones (2,2), 2, 3) %!error binornd (ones (2,2), 2, [3, 2]) %!error binornd (ones (2,2), 2, 2, 3)