Mercurial > hg > octave-nkf
view scripts/statistics/distributions/fpdf.m @ 20038:9fc020886ae9
maint: Clean up m-files to follow Octave coding conventions.
Try to trim long lines to < 80 chars.
Use '##' for single line comments.
Use '(...)' around tests for if/elseif/switch/while.
Abut cell indexing operator '{' next to variable.
Abut array indexing operator '(' next to variable.
Use space between negation operator '!' and following expression.
Use two newlines between endfunction and start of %!test or %!demo code.
Remove unnecessary parens grouping between short-circuit operators.
Remove stray extra spaces (typos) between variables and assignment operators.
Remove stray extra spaces from ends of lines.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 23 Feb 2015 14:54:39 -0800 |
parents | 4197fc428c7d |
children | d9341b422488 |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2015 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} fpdf (@var{x}, @var{m}, @var{n}) ## For each element of @var{x}, compute the probability density function ## (PDF) at @var{x} of the F distribution with @var{m} and @var{n} ## degrees of freedom. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the F distribution function pdf = fpdf (x, m, n) if (nargin != 3) print_usage (); endif if (! isscalar (m) || ! isscalar (n)) [retval, x, m, n] = common_size (x, m, n); if (retval > 0) error ("fpdf: X, M, and N must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (m) || iscomplex (n)) error ("fpdf: X, M, and N must not be complex"); endif if (isa (x, "single") || isa (m, "single") || isa (n, "single")) pdf = zeros (size (x), "single"); else pdf = zeros (size (x)); endif k = isnan (x) | !(m > 0) | !(m < Inf) | !(n > 0) | !(n < Inf); pdf(k) = NaN; k = (x > 0) & (x < Inf) & (m > 0) & (m < Inf) & (n > 0) & (n < Inf); if (isscalar (m) && isscalar (n)) tmp = m / n * x(k); pdf(k) = (exp ((m/2 - 1) * log (tmp) - ((m + n) / 2) * log (1 + tmp)) * (m / n) ./ beta (m/2, n/2)); else tmp = m(k) .* x(k) ./ n(k); pdf(k) = (exp ((m(k)/2 - 1) .* log (tmp) - ((m(k) + n(k)) / 2) .* log (1 + tmp)) .* (m(k) ./ n(k)) ./ beta (m(k)/2, n(k)/2)); endif endfunction ## F (x, 1, m) == T distribution (sqrt (x), m) / sqrt (x) %!test %! x = rand (10,1); %! x = x(x > 0.1 & x < 0.9); %! y = tpdf (sqrt (x), 2) ./ sqrt (x); %! assert (fpdf (x, 1, 2), y, 5*eps); %!shared x,y %! x = [-1 0 0.5 1 2]; %! y = [0 0 4/9 1/4 1/9]; %!assert (fpdf (x, 2*ones (1,5), 2*ones (1,5)), y, eps) %!assert (fpdf (x, 2, 2*ones (1,5)), y, eps) %!assert (fpdf (x, 2*ones (1,5), 2), y, eps) %!assert (fpdf (x, [0 NaN Inf 2 2], 2), [NaN NaN NaN y(4:5)], eps) %!assert (fpdf (x, 2, [0 NaN Inf 2 2]), [NaN NaN NaN y(4:5)], eps) %!assert (fpdf ([x, NaN], 2, 2), [y, NaN], eps) ## Test class of input preserved %!assert (fpdf (single ([x, NaN]), 2, 2), single ([y, NaN]), eps ("single")) %!assert (fpdf ([x, NaN], single (2), 2), single ([y, NaN]), eps ("single")) %!assert (fpdf ([x, NaN], 2, single (2)), single ([y, NaN]), eps ("single")) ## Test input validation %!error fpdf () %!error fpdf (1) %!error fpdf (1,2) %!error fpdf (1,2,3,4) %!error fpdf (ones (3), ones (2), ones (2)) %!error fpdf (ones (2), ones (3), ones (2)) %!error fpdf (ones (2), ones (2), ones (3)) %!error fpdf (i, 2, 2) %!error fpdf (2, i, 2) %!error fpdf (2, 2, i)