Mercurial > hg > octave-nkf
view scripts/statistics/base/zscore.m @ 13818:a05e5db7b94e
have some fun with waitbar demo #2
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 04 Nov 2011 14:33:44 -0400 |
parents | 6b2f14af2360 |
children | 72c96de7a403 |
line wrap: on
line source
## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} zscore (@var{x}) ## @deftypefnx {Function File} {} zscore (@var{x}, @var{dim}) ## If @var{x} is a vector, subtract its mean and divide by its standard ## deviation. ## ## If @var{x} is a matrix, do the above along the first non-singleton ## dimension. ## If the optional argument @var{dim} is given, operate along this dimension. ## @seealso{center} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Subtract mean and divide by standard deviation function z = zscore (x, dim) if (nargin != 1 && nargin != 2) print_usage (); endif if (! (isnumeric (x) || islogical (x))) error ("zscore: X must be a numeric vector or matrix"); endif nd = ndims (x); sz = size (x); if (nargin != 2) ## Find the first non-singleton dimension. (dim = find (sz > 1, 1)) || (dim = 1); else if (!(isscalar (dim) && dim == fix (dim)) || !(1 <= dim && dim <= nd)) error ("zscore: DIM must be an integer and a valid dimension"); endif endif n = sz(dim); if (n == 0) z = x; else x = center (x, dim); # center also promotes integer to double for next line z = zeros (sz, class (x)); s = std (x, [], dim); s(s==0) = 1; z = bsxfun (@rdivide, x, s); endif endfunction %!assert(zscore ([1,2,3]), [-1,0,1]) %!assert(zscore (single([1,2,3])), single([-1,0,1])) %!assert(zscore (int8([1,2,3])), [-1,0,1]) %!assert(zscore (ones (3,2,2,2)), zeros (3,2,2,2)) %!assert(zscore ([2,0,-2;0,2,0;-2,-2,2]), [1,0,-1;0,1,0;-1,-1,1]) %% Test input validation %!error zscore () %!error zscore (1, 2, 3) %!error zscore (['A'; 'B']) %!error zscore (1, ones(2,2)) %!error zscore (1, 1.5) %!error zscore (1, 0) %!error zscore (1, 3)