Mercurial > hg > octave-nkf
view scripts/polynomial/mkpp.m @ 11939:a24565131108 release-3-0-x
fix invalid matrix dimensioning in graphics.cc
author | Marco Caliari <marco.caliari@univr.it> |
---|---|
date | Wed, 25 Feb 2009 08:40:31 +0100 |
parents | a1dbe9d80eee |
children | eb7bdde776f2 |
line wrap: on
line source
## Copyright (C) 2000, 2006, 2007 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} = } mkpp (@var{x}, @var{p}) ## @deftypefnx {Function File} {@var{pp} = } mkpp (@var{x}, @var{p}, @var{d}) ## ## Construct a piece-wise polynomial structure from sample points ## @var{x} and coefficients @var{p}. The ith row of @var{p}, ## @code{@var{p} (@var{i},:)}, contains the coefficients for the polynomial ## over the @var{i}-th interval, ordered from highest to ## lowest. There must be one row for each interval in @var{x}, so ## @code{rows (@var{p}) == length (@var{x}) - 1}. ## ## You can concatenate multiple polynomials of the same order over the ## same set of intervals using @code{@var{p} = [ @var{p1}; @var{p2}; ## @dots{}; @var{pd} ]}. In this case, @code{rows (@var{p}) == @var{d} ## * (length (@var{x}) - 1)}. ## ## @var{d} specifies the shape of the matrix @var{p} for all except the ## last dimension. If @var{d} is not specified it will be computed as ## @code{round (rows (@var{p}) / (length (@var{x}) - 1))} instead. ## ## @seealso{unmkpp, ppval, spline} ## @end deftypefn function pp = mkpp (x, P, d) if (nargin < 2 || nargin > 3) print_usage (); endif pp.x = x(:); pp.P = P; pp.n = length (x) - 1; pp.k = columns (P); if (nargin < 3) d = round (rows (P) / pp.n); endif pp.d = d; if (pp.n * prod (d) != rows (P)) error ("mkpp: num intervals in x doesn't match num polynomials in P"); endif endfunction %!demo # linear interpolation %! x=linspace(0,pi,5)'; %! t=[sin(x),cos(x)]; %! m=diff(t)./(x(2)-x(1)); %! b=t(1:4,:); %! pp = mkpp(x, [m(:),b(:)]); %! xi=linspace(0,pi,50); %! plot(x,t,"x",xi,ppval(pp,xi)); %! legend("control","interp");