Mercurial > hg > octave-nkf
view scripts/linear-algebra/rank.m @ 20815:a260a6acb70f
fix test failures introduced by a22d8a2eb0e5
* scripts/ode/private/integrate_adaptive.m: fix stepping backwards, fix
invocation of OutputFcn, fix text of some error messages
* scripts/ode/private/integrate_const.m: remove use of option OutputSave
* scripts/ode/private/integrate_n_steps.m: remove use of option OutputSave
author | Carlo de Falco <carlo.defalco@polimi.it> |
---|---|
date | Sun, 11 Oct 2015 23:09:01 +0200 |
parents | 03b9d17a2d95 |
children |
line wrap: on
line source
## Copyright (C) 1993-2015 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} rank (@var{A}) ## @deftypefnx {Function File} {} rank (@var{A}, @var{tol}) ## Compute the rank of matrix @var{A}, using the singular value decomposition. ## ## The rank is taken to be the number of singular values of @var{A} that are ## greater than the specified tolerance @var{tol}. If the second argument is ## omitted, it is taken to be ## ## @example ## tol = max (size (@var{A})) * sigma(1) * eps; ## @end example ## ## @noindent ## where @code{eps} is machine precision and @code{sigma(1)} is the largest ## singular value of @var{A}. ## ## The rank of a matrix is the number of linearly independent rows or columns ## and determines how many particular solutions exist to a system of equations. ## Use @code{null} for finding the remaining homogenous solutions. ## ## Example: ## ## @example ## @group ## x = [1 2 3 ## 4 5 6 ## 7 8 9]; ## rank (x) ## @result{} 2 ## @end group ## @end example ## ## @noindent ## The number of linearly independent rows is only 2 because the final row is a ## linear combination of -1*row1 + 2*row2. ## ## @seealso{null, sprank, svd} ## @end deftypefn ## Author: jwe function retval = rank (A, tol) if (nargin == 1) sigma = svd (A); if (isempty (sigma)) tolerance = 0; else if (isa (A, "single")) tolerance = max (size (A)) * sigma (1) * eps ("single"); else tolerance = max (size (A)) * sigma (1) * eps; endif endif elseif (nargin == 2) sigma = svd (A); tolerance = tol; else print_usage (); endif retval = sum (sigma > tolerance); endfunction %!test %! A = [1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 1 2 3.1 4 5 6 7; %! 2 3 4 5 6 7 8; %! 3 4 5 6 7 8 9; %! 4 5 6 7 8 9 10; %! 5 6 7 8 9 10 11]; %! assert (rank (A), 4); %!test %! A = [1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 1 2 3.0000001 4 5 6 7; %! 4 5 6 7 8 9 12.00001; %! 3 4 5 6 7 8 9; %! 4 5 6 7 8 9 10; %! 5 6 7 8 9 10 11]; %! assert (rank (A), 4); %!test %! A = [1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12.00001; %! 3 4 5 6 7 8 9; %! 4 5 6 7 8 9 10; %! 5 6 7 8 9 10 11]; %! assert (rank (A), 3); %!test %! A = [1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 1 2 3 4 5 6 7; %! 4 5 6 7 8 9 12; %! 3 4 5 6 7 8 9; %! 4 5 6 7 8 9 10; %! 5 6 7 8 9 10 11]; %! assert (rank (A), 3); %!test %! A = eye (100); %! assert (rank (A), 100); %!assert (rank ([]), 0) %!assert (rank ([1:9]), 1) %!assert (rank ([1:9]'), 1) %!test %! A = [1, 2, 3; 1, 2.001, 3; 1, 2, 3.0000001]; %! assert (rank (A), 3); %! assert (rank (A,0.0009), 1); %! assert (rank (A,0.0006), 2); %! assert (rank (A,0.00000002), 3);