Mercurial > hg > octave-nkf
view scripts/miscellaneous/bincoeff.m @ 6746:a8105a726e68
[project @ 2007-06-19 08:18:34 by dbateman]
author | dbateman |
---|---|
date | Tue, 19 Jun 2007 08:18:34 +0000 |
parents | 34f96dd5441b |
children | d6d19fcc51b0 |
line wrap: on
line source
## Copyright (C) 1995, 1996 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Mapping Function} {} bincoeff (@var{n}, @var{k}) ## Return the binomial coefficient of @var{n} and @var{k}, defined as ## @iftex ## @tex ## $$ ## {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!} ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## @group ## / \ ## | n | n (n-1) (n-2) ... (n-k+1) ## | | = ------------------------- ## | k | k! ## \ / ## @end group ## @end example ## @end ifinfo ## ## For example, ## ## @example ## @group ## bincoeff (5, 2) ## @result{} 10 ## @end group ## @end example ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 8 October 1994 ## Adapted-By: jwe function b = bincoeff (n, k) if (nargin != 2) print_usage (); endif [retval, n, k] = common_size (n, k); if (retval > 0) error ("bincoeff: n and k must be of common size or scalars"); endif sz = size (n); b = zeros (sz); ind = (! (k >= 0) | (k != real (round (k))) | isnan (n)); b(ind) = NaN; ind = (k == 0); b(ind) = 1; ind = ((k > 0) & ((n == real (round (n))) & (n < 0))); b(ind) = (-1) .^ k(ind) .* exp (gammaln (abs (n(ind)) + k(ind)) ... - gammaln (k(ind) + 1) - gammaln (abs (n(ind)))); ind = ((k > 0) & ((n != real (round (n))) | (n >= k))); b(ind) = exp (gammaln (n(ind) + 1) - gammaln (k(ind) + 1) ... - gammaln (n(ind) - k(ind) + 1)); ## clean up rounding errors ind = (n == round (n)); b(ind) = round (b(ind)); endfunction